CLOSED-LOOP THEORY OF MOTOR LEARNING

被引:2
|
作者
ADAMS, JA [1 ]
机构
[1] UNIV ILLINOIS, DEPT PSYCHOL, URBANA, IL USA
关键词
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
引用
收藏
页码:111 / 150
页数:40
相关论文
共 50 条
  • [41] Closed-loop starting method for sensorless brushless DC motor
    Wang, Qiang
    Wang, You-Ren
    Wang, Ling
    Xu, Xu-Ming
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2013, 17 (11): : 41 - 46
  • [42] SIMPLIFIED MODEL AND CLOSED-LOOP CONTROL OF A COMMUTATORLESS DC MOTOR
    JAKUBOWICZ, A
    NOUGARET, M
    PERRET, R
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1980, 16 (02) : 165 - 172
  • [43] Closed-loop separation control using machine learning
    Gautier, N.
    Aider, J. -L.
    Duriez, T.
    Noack, B. R.
    Segond, M.
    Abel, M.
    JOURNAL OF FLUID MECHANICS, 2015, 770 : 442 - 457
  • [44] Delayed reinforcement learning for closed-loop object recognition
    Peng, J
    Bhanu, B
    IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 1429 - 1435
  • [45] Closed-loop control of a noisy qubit with reinforcement learning
    Ding, Yongcheng
    Chen, Xi
    Magdalena-Benedito, Rafael
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [46] Guaranteed Closed-Loop Learning in Model Predictive Control
    Soloperto, Raffaele
    Muller, Matthias A.
    Allgower, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 991 - 1006
  • [47] Closed-loop learning control of bio-networks
    Ku, J
    Feng, XJ
    Rabitz, H
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (04) : 642 - 659
  • [48] Closed-loop object recognition using reinforcement learning
    Peng, J
    Bhanu, B
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 538 - 543
  • [49] Closed-loop object recognition using reinforcement learning
    Peng, J
    Bhanu, B
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (02) : 139 - 154
  • [50] Closed-loop Rescheduling using Deep Reinforcement Learning
    Palombarini, Jorge A.
    Martinez, Ernesto C.
    IFAC PAPERSONLINE, 2019, 52 (01): : 231 - 236