THE SOLUTION OF PROBLEMS IN ELASTICITY THEORY BY COMPLETE-SYSTEM METHODS

被引:0
作者
BESPALOVA, EI
机构
来源
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS | 1989年 / 29卷 / 05期
关键词
D O I
10.1016/0041-5553(89)90179-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main points of complete-system methods are presented as it applies to solving problems concerning the static and free vibrations of inhomogeneous anisotropic bodies in a variational setting. The characteristic feature of these method is the reduction of an initially N-dimensional problem to a system of N interrelated one-dimensional problems. Unlike the common variational approaches, one no longer has any freedom with regard to the choice of basis functions with respect to some of the independent variables. Some computational aspects of the approach are illustrated by a specific example.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 14 条
  • [1] BERDICHEVSKII VL, 1983, VARIATIONAL PRINCIPL
  • [2] BESPALOVA EI, 1988, PRIKL MEKH, V24, P43
  • [3] BESPALOVA EI, 1987, STRENGTH MATERIALS C, P24
  • [4] BESPALOVA EI, 1987, PRIKL MEKH, V23, P78
  • [5] COLLATZ L, 1948, EIGENWERTPROBLEME IH
  • [6] DORODNITSYN AA, 1960, PMTF, V1, P111
  • [7] Hartree D. R., 1957, CALCULATION ATOMIC S
  • [8] Kantorovich L. V., 1962, APPROXIMATE METHODS
  • [9] Kantorovich LV, 1933, IZVEST AKAD NAUK SSS, V5, P647
  • [10] Kerr AD., 1968, ACTA MECH, V6, P180