Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring

被引:8
|
作者
Li, Jingcheng [1 ]
Jang, Shinae [1 ]
Tang, Jiong [2 ]
机构
[1] Univ Connecticut, Civil & Environm Engn Dept, Storrs, CT 06269 USA
[2] Univ Connecticut, Mech Engn Dept, Storrs, CT 06269 USA
关键词
Piezoelectric; Energy Harvesting; Railway; Structural Health Monitoring;
D O I
10.7779/JKSNT.2012.32.6.661
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wireless sensor network is one of prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree-of-freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s(2) base excitation compared to stand-alone piezoelectric energy harvester without tip mass.
引用
收藏
页码:661 / 668
页数:8
相关论文
共 50 条
  • [31] Powering the WSN Node for Monitoring Rail Car Parameters, Using a Piezoelectric Energy Harvester
    Dziadak, Bogdan
    Kucharek, Mariusz
    Starzynski, Jacek
    ENERGIES, 2022, 15 (05)
  • [32] Piezoelectric energy harvester impedance matching using a piezoelectric transformer
    Jabbar, Hamid
    Jung, Hyun Jun
    Chen, Nan
    Cho, Dae Heung
    Sung, Tae Hyun
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 264 : 141 - 150
  • [33] Design optimization of piezoelectric energy harvester subject to tip excitation
    Juil Park
    Soobum Lee
    Byung Man Kwak
    Journal of Mechanical Science and Technology, 2012, 26 : 137 - 143
  • [34] A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments
    Khameneifar, Farbod
    Arzanpour, Siamak
    Moallem, Mehrdad
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (05) : 1527 - 1534
  • [35] Integrated mechatronic design of an industrial piezoelectric vibration energy harvester
    Brusa, Eugenio
    Carrera, Anna
    Delprete, Cristiana
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (27) : 8966 - 8980
  • [36] Design and analysis of cantilever based piezoelectric vibration energy harvester
    Savarimuthu, Kirubaveni
    Sankararajan, Radha
    Alsath, Gulam Nabi M.
    Roji, Ani Melfa M.
    CIRCUIT WORLD, 2018, 44 (02) : 78 - 86
  • [37] Design, optimization, modeling and testing of a piezoelectric footwear energy harvester
    Qian, Feng
    Xu, Tian-Bing
    Zuo, Lei
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1352 - 1364
  • [38] Design optimization of piezoelectric energy harvester subject to tip excitation
    Park, Juil
    Lee, Soobum
    Kwak, Byung Man
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (01) : 137 - 143
  • [39] Degradation of bimorph piezoelectric bending beams in energy harvesting applications
    Pillatsch, P.
    Xiao, B. L.
    Shashoua, N.
    Gramling, H. M.
    Yeatman, E. M.
    Wright, P. K.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (03)
  • [40] Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester
    Lian-min Cao
    Zhi-xu Li
    Cheng Guo
    Peng-peng Li
    Xiang-qiang Meng
    Ting-ming Wang
    International Journal of Precision Engineering and Manufacturing, 2019, 20 : 673 - 686