Some identities involving generalized hypergeometric series

被引:0
|
作者
Bailey, WN
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:503 / 516
页数:14
相关论文
共 50 条
  • [21] Summation identities and transformations for hypergeometric series
    Barman R.
    Saikia N.
    Annales mathématiques du Québec, 2018, 42 (2) : 133 - 157
  • [22] Some conjectures concerning partial sums of generalized hypergeometric series
    vanHamme, L
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 223 - 236
  • [23] Hypergeometric series and harmonic number identities
    Chu, WC
    De Donno, L
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (01) : 123 - 137
  • [24] BINOMIAL IDENTITIES AND HYPERGEOMETRIC-SERIES
    ROY, R
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 36 - 46
  • [25] An Identity Involving Product of Generalized Hypergeometric Series 2F2
    Kim, Yong Sup
    Choi, Junesang
    Rathie, Arjun Kumar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02): : 293 - 299
  • [26] A NOTE ON GENERALIZATIONS OF BAILEY'S IDENTITY INVOLVING PRODUCTS OF GENERALIZED HYPERGEOMETRIC SERIES
    Kilicman, Adem
    Kurumujji, Shantha Kumari
    Rathie, Arjun K.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 575 - 583
  • [27] Some identities of certain basic hypergeometric series and their applications to mock theta functions
    Zhizheng Zhang
    Hanfei Song
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1214 - 1225
  • [28] Some identities involving generalized (α, β)-derivations in prime and semiprime rings
    Bera, Manami
    Dhara, Basudeb
    Kar, Sukhendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [29] SOME IDENTITIES INVOLVING DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS
    Cooper, Curtis
    COLLOQUIUM MATHEMATICUM, 2015, 141 (01) : 45 - 49
  • [30] Some hypergeometric summation formulas and series identities associated with exponential and trigonometric functions
    Qureshi, M. I.
    Quraishi, Kaleem A.
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (3-4) : 267 - 276