PHOTOCROSSLINKED HYDROGELS BASED ON COPOLYMERS OF POLY(ETHYLENE GLYCOL) AND LYSINE

被引:56
|
作者
VYAVAHARE, N [1 ]
KOHN, J [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT CHEM,POB 939,PISCATAWAY,NJ 08855
关键词
L-LYSINE; POLY(ETHER URETHANE); PHOTOCROSSLINKED; POLY(ETHYLENE GLYCOL); HYDROGEL(S); DRUG RELEASE;
D O I
10.1002/pola.1994.080320708
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A group of new, water-soluble poly (ether-urethane) s, derived from poly (ethylene glycol) and the amino acid L-lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. The crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64-88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1 M, pH 7.4, 37-degrees-C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly (ethylene glycol) -lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:1271 / 1281
页数:11
相关论文
共 50 条
  • [21] Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate)
    Smeets, Niels M. B.
    Bakaic, Emilia
    Patenaude, Mathew
    Hoare, Todd
    CHEMICAL COMMUNICATIONS, 2014, 50 (25) : 3306 - 3309
  • [22] Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers
    Du, Jin-Zhi
    Sun, Tian-Meng
    Weng, Song-Qing
    Chen, Xue-Si
    Wang, Jun
    BIOMACROMOLECULES, 2007, 8 (11) : 3375 - 3381
  • [23] A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) block copolymers
    Gong, ChangYang
    Qian, ZhiYong
    Liu, CaiBing
    Huang, MeiJuan
    Gu, YingChun
    Wen, YanJun
    Kan, Bing
    Wang, Ke
    Dai, Mei
    Li, XingYi
    Gou, MaLing
    Tu, MingJing
    Wei, YuQuan
    SMART MATERIALS AND STRUCTURES, 2007, 16 (03) : 927 - 933
  • [24] Comparative behavior of poly(ethylene glycol) hydrogels and poly(ethylene glycol) aqueous biphasic systems
    Huddleston, JG
    Looney, TK
    Broker, GA
    Griffin, ST
    Spear, SK
    Spear, SK
    Rogers, RD
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (24) : 6088 - 6095
  • [25] Segmented block copolymers of poly(ethylene glycol) and poly(ethylene terephthalate)
    García-Gaitán, B
    Pérez-González, ADP
    Martínez-Richa, A
    Luna-Bárcenas, G
    Nuño-Donlucas, SM
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (17) : 4448 - 4457
  • [26] New poly(propylene glycol)- and poly(ethylene glycol)-based polymer gelators with L-lysine
    Suzuki, M
    Owa, S
    Shirai, H
    Hanabusa, K
    MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (10) : 803 - 807
  • [27] Poly(ethylene glycol) star polymer hydrogels
    Keys, KB
    Andreopoulos, FM
    Peppas, NA
    MACROMOLECULES, 1998, 31 (23) : 8149 - 8156
  • [28] Poly(ethylene glycol) star polymer hydrogels
    Purdue Univ, West Lafayette, United States
    Macromolecules, 23 (8149-8156):
  • [29] Effects of sterilization on poly(ethylene glycol) hydrogels
    Kanjickal, Deenu
    Lopina, Stephanie
    Evancho-Chapman, M. Michelle
    Schmidt, Steven
    Donovan, Duane
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (03) : 608 - 617
  • [30] Micropatterning of Poly(ethylene glycol) Diacrylate Hydrogels
    Ali, Saniya
    Cuchiara, Maude L.
    West, Jennifer L.
    MICROPATTERNING IN CELL BIOLOGY, PT C, 2014, 121 : 105 - +