ON QUADRATIC TWISTS OF ELLIPTIC CURVES y(2) = x(x - 1)(x - lambda)

被引:0
|
作者
Dujella, Andrej [1 ]
Gusic, Ivica [2 ]
Lasic, Luka [2 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Chem Engn & Tech, Zagreb 10000, Croatia
来源
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI | 2014年 / 18卷 / 519期
关键词
Elliptic curve; quadratic twist;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q given by y(2) = f(x) where f (x) = x (x - 1)(x - lambda). In this paper, we describe a construction of twists E-g (u) of rank 2 over Q(u), where g (u) are polynomials over Q. The construction leads to two sets of twists: the first consists of five twists obtained by Rubin and Silverberg with a different method, while the second consists of five new twists.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [31] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [32] An exact upper bound estimate for the number of integer points on the elliptic curves y2=x3−pkx
    Su Gou
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [33] The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx
    Zhang, Jin
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [34] The Mordell-Weil bases for the elliptic curve y2 = x3 − m2x + m2
    Sudhansu Sekhar Rout
    Abhishek Juyal
    Czechoslovak Mathematical Journal, 2021, 71 : 1133 - 1147
  • [35] On the elliptic curve y~2=x~3-2r Dx and factoring integers
    LI XiuMei
    ZENG JinXiang
    ScienceChina(Mathematics), 2014, 57 (04) : 719 - 728
  • [36] The Mordell-Weil Bases for the Elliptic Curve y2 = x3 - m2x + m2
    Rout, Sudhansu Sekhar
    Juyal, Abhishek
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 1133 - 1147
  • [37] The Mahler measure of x+1/x + y+1/y+4 ± 4√2 and Beilinson's conjecture
    Guo, Xuejun
    Ji, Qingzhong
    Liu, Hang
    Qin, Hourong
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (01) : 185 - 197
  • [38] A note on the trace of Frobenius for curves of the form y2 = x3
    Walsh, P. G.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2022, 55 : 184 - 188
  • [39] A Method of Generating 8 x 8 Substitution Boxes Based on Elliptic Curves
    Hayat, Umar
    Azam, Naveed Ahmed
    Asif, Muhammad
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 101 (01) : 439 - 451
  • [40] Rational points on x3 + x2y2 + y3 = k
    Lang, Xiaoan
    Rouse, Jeremy
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (07) : 1767 - 1778