ON QUADRATIC TWISTS OF ELLIPTIC CURVES y(2) = x(x - 1)(x - lambda)

被引:0
|
作者
Dujella, Andrej [1 ]
Gusic, Ivica [2 ]
Lasic, Luka [2 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Chem Engn & Tech, Zagreb 10000, Croatia
来源
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI | 2014年 / 18卷 / 519期
关键词
Elliptic curve; quadratic twist;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q given by y(2) = f(x) where f (x) = x (x - 1)(x - lambda). In this paper, we describe a construction of twists E-g (u) of rank 2 over Q(u), where g (u) are polynomials over Q. The construction leads to two sets of twists: the first consists of five twists obtained by Rubin and Silverberg with a different method, while the second consists of five new twists.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [21] Elliptic Curve Integral Points on y2 = x3+19x-46
    Zhao, Jianhong
    Yang, Lixing
    PROCEEDINGS OF THE 2ND INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION (IFMEITA 2017), 2017, 130 : 628 - 632
  • [22] Integral Points on the Elliptic Curve y2 = x3 − 4p2x
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2019, 69 : 853 - 862
  • [23] The integral points on elliptic curves y2 = x3+(36n2- 9)x-2(36n2-5)
    Yang, Hai
    Fu, Ruiqin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 375 - 383
  • [24] Lang's conjecture and sharp height estimates for the elliptic curves y2 = x3 + b
    Voutier, Paul
    Yabuta, Minoru
    ACTA ARITHMETICA, 2016, 173 (03) : 197 - 224
  • [25] LANG'S CONJECTURE AND SHARP HEIGHT ESTIMATES FOR THE ELLIPTIC CURVES y2 = x3 + ax
    Voutier, Paul
    Yabuta, Minoru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1141 - 1170
  • [26] The upper bound estimate of the number of integer points on elliptic curves y2=x3+p2rx
    Jin Zhang
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [27] THE TORSION SUBGROUP OF THE ELLIPTIC CURVE Y2 = X3
    Dimabayao, Jerome T.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 63 (02) : 137 - 149
  • [28] On the elliptic curve y 2 = x 3-2rDx and factoring integers
    Li XiuMei
    Zeng JinXiang
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 719 - 728
  • [29] An exact upper bound estimate for the number of integer points on the elliptic curves y2 = x3 - pkx
    Gou, Su
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [30] Elliptic Curves of Type y2 = x3 - 3pqx Having Ranks Zero and One
    Mina, R. J. S.
    Bacani, J. B.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 67 - 76