ON THE CAUCHY-PROBLEM FOR HARMONIC MAPS DEFINED ON TWO-DIMENSIONAL MINKOWSKI SPACE

被引:2
|
作者
GU, CH
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [31] ENTIRE SOLUTIONS OF THE ABSTRACT CAUCHY-PROBLEM IN A HILBERT-SPACE
    DELAUBENFELS, R
    YAO, FY
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) : 3351 - 3356
  • [32] The Cauchy problem for the two-dimensional Euler-Poisson system
    Li, Dong
    Wu, Yifei
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (10) : 2211 - 2266
  • [33] ON THE CAUCHY TYPE PROBLEM FOR TWO-DIMENSIONAL FUNCTIONAL DIFFERENTIAL SYSTEMS
    Sremr, Jiri
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2007, 40 : 77 - 134
  • [34] Regularity at the free boundary of two-dimensional stationary harmonic maps
    Gruter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02): : 151 - 167
  • [35] Two-Dimensional Ferronematics, Canonical Harmonic Maps and Minimal Connections
    Canevari, Giacomo
    Majumdar, Apala
    Stroffolini, Bianca
    Wang, Yiwei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (06)
  • [36] Two-Dimensional Ferronematics, Canonical Harmonic Maps and Minimal Connections
    Giacomo Canevari
    Apala Majumdar
    Bianca Stroffolini
    Yiwei Wang
    Archive for Rational Mechanics and Analysis, 2023, 247
  • [37] THE CAUCHY-PROBLEM IN A SPACE OF GENERALIZED-FUNCTIONS .2.
    COLOMBEAU, JF
    HEIBIG, A
    OBERGUGGENBERGER, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (11): : 1179 - 1183
  • [38] THE CAUCHY-PROBLEM IN A SPACE OF GENERALIZED-FUNCTIONS .1.
    COLOMBEAU, JF
    HEIBIG, A
    OBERGUGGENBERGER, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 851 - 855
  • [39] NONCHARACTERISTIC CAUCHY-PROBLEM FOR PARABOLIC EQUATIONS IN ONE SPACE VARIABLE
    COLTON, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 263 - 272
  • [40] Dirichlet Problem for Functions that are Harmonic on a Two-Dimensional Net
    Kovaleva L.A.
    Soldatov A.P.
    Journal of Mathematical Sciences, 2021, 257 (1) : 41 - 47