THE BRUNN-MINKOWSKI INEQUALITY FOR RANDOM SETS

被引:12
|
作者
VITALE, RA
机构
基金
美国国家科学基金会;
关键词
Anderson's inequality; Brunn-Minkowski inequality; multivariate density; random set; selection; set-valued expectation; unimodality;
D O I
10.1016/0047-259X(90)90052-J
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Brunn-Minkowski inequality asserts a concavity feature of the volume functional under convex addition of sets. Among its applications has been Anderson's treatment of multivariate densities. Here we present a generalization which interprets the inequality in terms of random sets. This provides a natural proof of Mudholkar's generalized Anderson-type inequality. © 1990.
引用
收藏
页码:286 / 293
页数:8
相关论文
共 50 条
  • [31] The dimensional Brunn-Minkowski inequality in Gauss space
    Eskenazis, Alexandros
    Moschidis, Georgios
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
  • [32] A generalization of the matrix form of the Brunn-Minkowski inequality
    Yuan, Jun
    Leng, Gangsong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 125 - 134
  • [33] Brunn-Minkowski inequality for mixed intersection bodies
    Zhao, CJ
    Leng, GS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (01) : 115 - 123
  • [34] The Orlicz Brunn-Minkowski Inequality for the Projection Body
    Zou, Du
    Xiong, Ge
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 2253 - 2272
  • [35] AN EXTENSION OF MILMANS REVERSE BRUNN-MINKOWSKI INEQUALITY
    BASTERO, J
    BERNUES, J
    PENA, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (03) : 572 - 581
  • [36] Quantitative stability results for the Brunn-Minkowski inequality
    Figalli, Alessio
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 237 - 256
  • [37] Triangulations and a Discrete Brunn-Minkowski Inequality in the Plane
    Boroczky, Karoly J.
    Matolcsi, Mate
    Ruzsa, Imre Z.
    Santos, Francisco
    Serra, Oriol
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (02) : 396 - 426
  • [38] A new approach to the Orlicz Brunn-Minkowski inequality
    Feng, Yibin
    He, Binwu
    ADVANCES IN APPLIED MATHEMATICS, 2019, 107 : 144 - 156
  • [39] A curved Brunn-Minkowski inequality for the symmetric group
    Neeranartvong, Weerachai
    Novak, Jonathan
    Sothanaphan, Nat
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [40] On the case of equality in the Brunn-Minkowski inequality for capacity
    Caffarelli, LA
    Jerison, D
    Lieb, EH
    ADVANCES IN MATHEMATICS, 1996, 117 (02) : 193 - 207