THE BRUNN-MINKOWSKI INEQUALITY FOR RANDOM SETS

被引:12
作者
VITALE, RA
机构
基金
美国国家科学基金会;
关键词
Anderson's inequality; Brunn-Minkowski inequality; multivariate density; random set; selection; set-valued expectation; unimodality;
D O I
10.1016/0047-259X(90)90052-J
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Brunn-Minkowski inequality asserts a concavity feature of the volume functional under convex addition of sets. Among its applications has been Anderson's treatment of multivariate densities. Here we present a generalization which interprets the inequality in terms of random sets. This provides a natural proof of Mudholkar's generalized Anderson-type inequality. © 1990.
引用
收藏
页码:286 / 293
页数:8
相关论文
共 17 条
[1]  
Anderson T.W., 1955, P AM MATH SOC, V6, P170, DOI [10.2307/2032333, DOI 10.2307/2032333]
[2]   STRONG LAW OF LARGE NUMBERS FOR RANDOM COMPACT SETS [J].
ARTSTEIN, Z ;
VITALE, RA .
ANNALS OF PROBABILITY, 1975, 3 (05) :879-882
[3]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[4]   GENERALIZATION OF ANDERSONS THEOREM ON UNIMODAL FUNCTIONS [J].
DASGUPTA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) :85-91
[5]   BRUNN-MINKOWSKI INEQUALITY AND ITS AFTERMATH [J].
DASGUPTA, S .
JOURNAL OF MULTIVARIATE ANALYSIS, 1980, 10 (03) :296-318
[6]  
Dinghas A., 1961, MINKOWSKISCHE SUMMEN
[7]  
Eggleston H. G., 1969, CONVEXITY
[8]  
MATHERON G., 1975, RANDOM SETS INTEGRAL
[9]   EXTREMAL PROPERTIES OF SOME GEOMETRIC PROCESSES [J].
MECKE, J .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (1-2) :61-69