ON THE PROBLEM OF APPROXIMATING THE NUMBER OF BASES OF A MATROID

被引:7
作者
AZAR, Y
BRODER, AZ
FRIEZE, AM
机构
[1] DIGITAL SYST RES CTR,PALO ALTO,CA 94301
[2] TEL AVIV UNIV,DEPT COMP SCI,IL-69978 TEL AVIV,ISRAEL
[3] CARNEGIE MELLON UNIV,DEPT MATH,PITTSBURGH,PA 15213
基金
美国国家科学基金会;
关键词
COMPUTATIONAL COMPLEXITY; MATROIDS; MATROID ORACLE ALGORITHMS; APPROXIMATE COUNTING;
D O I
10.1016/0020-0190(94)90037-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
[No abstract available]
引用
收藏
页码:9 / 11
页数:3
相关论文
共 13 条
[1]  
BARANI I, 1986, 18 ANN ACM S THEOR C, P442
[2]  
BRODER AZ, 1986, 18TH P ACM S THEOR C, P50
[3]  
BRODER AZ, 1988, 20TH P ACM S THEOR C, P551
[4]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[5]  
DYER ME, 1992, 2ND P IPCO C, P72
[6]   A GEOMETRIC INEQUALITY AND THE COMPLEXITY OF COMPUTING VOLUME [J].
ELEKES, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :289-292
[7]  
FEDER T, 1992, 24TH P ANN ACM S THE, P26
[8]  
Knuth D. E., 1974, Journal of Combinatorial Theory, Series A, V16, P398, DOI 10.1016/0097-3165(74)90063-6
[9]  
LOVASZ L, IN PRESS RANDOM STRU
[10]  
Oxley JG, 1993, MATROID THEORY