NUMERICAL-ANALYSIS OF A 3-FIELDS MODEL FOR A QUASI-NEWTONIAN FLOW

被引:36
作者
BARANGER, J [1 ]
NAJIB, K [1 ]
SANDRI, D [1 ]
机构
[1] FAC SCI EL JADIDA,DEPT MATH,EL JADIDA,MOROCCO
关键词
D O I
10.1016/0045-7825(93)90082-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a finite element approximation of a non-linear three fields version of Stokes' system for incompressible fluids. Such a problem arises when one considers a White-Metzner type model for a viscoelastic fluid flow and sets the relaxation time to zero. The non-linear aspect comes from the fact that a fraction of the viscosity of the fluid depends on the second invariant of the rate of deformation tenser. We give existence and unicity results for the continuous problem and its approximation and we prove the error bound.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 15 条
[1]   ERROR-ESTIMATES FOR A MIXED FINITE-ELEMENT METHOD FOR A NON-NEWTONIAN FLOW [J].
BARANGER, J ;
GEORGET, P ;
NAJIB, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1987, 23 :415-421
[2]   NUMERICAL-ANALYSIS OF QUASI-NEWTONIAN FLOW OBEYING THE POWER LOW OR THE CARREAU FLOW [J].
BARANGER, J ;
NAJIB, K .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :35-49
[3]   FINITE-ELEMENT APPROXIMATION OF VISCOELASTIC FLUID-FLOW - EXISTENCE OF APPROXIMATE SOLUTIONS AND ERROR-BOUNDS .1. DISCONTINUOUS CONSTRAINTS [J].
BARANGER, J ;
SANDRI, D .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :13-27
[4]  
BARANGER J, 1992, RAIRO-MATH MODEL NUM, V26, P331
[5]  
Bird RB, 1987, DYNAMICS POLYM LIQUI, V91, P1397, DOI DOI 10.1016/0377-0257(78)80009-3
[6]   ON THE CONVERGENCE OF THE MIXED METHOD OF CROCHET AND MARCHAL FOR VISCOELASTIC FLOWS [J].
FORTIN, M ;
PIERRE, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 73 (03) :341-350
[7]  
FORTIN M, 1977, RAIRO-ANAL NUMER-NUM, V11, P341
[8]  
GEORGET P, 1985, THESIS U LYON 1
[9]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[10]  
Hakim A., 1990, THESIS U PARIS SUD