EXACT EXPRESSIONS FOR THE BIAS AND VARIANCE OF ESTIMATORS OF THE MEAN OF A LOGNORMAL-DISTRIBUTION

被引:0
作者
ATTFIELD, MD
HEWETT, P
机构
来源
AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL | 1992年 / 53卷 / 07期
关键词
D O I
10.1202/0002-8894(1992)053<0432:EEFTBA>2.0.CO;2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exact mathematical expressions are given for the bias and variance of the arithmetic and maximum likelihood estimators of the first moment (mean) of a lognormal distribution. On the basis of these exact expressions, and without the need for simulation, statistics on the bias and variance have been computed for a range of sample sizes and geometric standard deviations. The results reaffirm that an unbiased maximum likelihood estimator exists that has minimum variance. Contrary to some recent recommendations, this is the preferred estimator if the data truly come from a lognormal distribution.
引用
收藏
页码:432 / 435
页数:4
相关论文
共 50 条
[31]   THE LOGNORMAL-DISTRIBUTION AS A MODEL FOR BIOOPTICAL VARIABILITY IN THE SEA [J].
CAMPBELL, JW .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C7) :13237-13254
[32]   A COMPARATIVE-EVALUATION OF THE ESTIMATORS OF THE 3-PARAMETER LOGNORMAL-DISTRIBUTION BY MONTE-CARLO SIMULATION [J].
SINGH, VP ;
CRUISE, JF ;
MA, M .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1990, 10 (01) :71-85
[33]   THE LOGNORMAL-DISTRIBUTION OF EPIPHYTIC BACTERIAL-POPULATIONS [J].
HIRANO, SS ;
NORDHEIM, EV ;
ARNY, DC ;
UPPER, CD .
PHYTOPATHOLOGY, 1981, 71 (02) :225-225
[34]   PROBABILISTIC STRENGTH DESIGN BASED ON LOGNORMAL-DISTRIBUTION [J].
AVAKOV, V .
MECHANICAL ENGINEERING, 1983, 105 (02) :100-100
[36]   PROBABILISTIC STRENGTH DESIGN BASED ON LOGNORMAL-DISTRIBUTION [J].
AVAKOV, V .
JOURNAL OF VIBRATION ACOUSTICS STRESS AND RELIABILITY IN DESIGN-TRANSACTIONS OF THE ASME, 1983, 105 (02) :160-162
[37]   LOGNORMAL-DISTRIBUTION AS THE NATURAL STATISTICS OF CLUSTER SYSTEMS [J].
POCSIK, I .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1991, 20 (1-4) :395-397
[38]   SMALL SAMPLE PROPERTIES OF THE MAXIMUM-LIKELIHOOD ESTIMATORS FOR AN ALTERNATIVE PARAMETERIZATION OF THE 3-PARAMETER LOGNORMAL-DISTRIBUTION [J].
EASTHAM, JF ;
LARICCIA, VN ;
SCHUENEMEYER, JH .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1987, 16 (03) :871-884
[40]   A HYPOTHESIS OF MINIMAL CONSTRAINT AND LOGNORMAL-DISTRIBUTION OF SENSITIVITY OF INDIVIDUALS [J].
KACHEVSKII, NV .
IZVESTIYA AKADEMII NAUK SSSR SERIYA BIOLOGICHESKAYA, 1990, (01) :125-132