Viewpoint Evaluation for Online 3-D Active Object Classification

被引:34
|
作者
Patten, Timothy [1 ]
Zillich, Michael [2 ]
Fitch, Robert [1 ]
Vincze, Markus [2 ]
Sukkarieh, Salah [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW, Australia
[2] Vienna Univ Technol, Automat & Control Inst, Vision4Robot Grp, Vienna, Austria
来源
基金
澳大利亚研究理事会;
关键词
Object detection; segmentation; categorization; Semantic scene understanding; RGB-D perception;
D O I
10.1109/LRA.2015.2506901
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present an end-to-end method for active object classification in cluttered scenes from RGB-D data. Our algorithms predict the quality of future viewpoints in the form of entropy using both class and pose. Occlusions are explicitly modeled in predicting the visible regions of objects, which modulates the corresponding discriminatory value of a given view. We implement a one-step greedy planner and demonstrate our method online using a mobile robot. We also analyze the performance of our method compared to similar strategies in simulated execution using the Willow Garage dataset. Results show that our active method usefully reduces the number of views required to accurately classify objects in clutter as compared to traditional passive perception.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [31] 3-D HANet: A Flexible 3-D Heatmap Auxiliary Network for Object Detection
    Xia, Qiming
    Chen, Yidong
    Cai, Guorong
    Chen, Guikun
    Xie, Daoshun
    Su, Jinhe
    Wang, Zongyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] Probabilistic Object and Viewpoint Models for Active Object Recognition
    Govender, Natasha
    Warrell, Jonathan
    Torr, Philip
    Nicolls, Fred
    AFRICON, 2013, 2013, : 1220 - 1226
  • [33] Contextual relativity of 3-D object representations
    Brettel, H.
    Gschwind, M.
    Rentschler, I.
    PERCEPTION, 2006, 35 : 36 - 36
  • [34] 3-D structures for generic object recognition
    Medioni, GG
    François, ARJ
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 30 - 37
  • [35] Neural correlates of 3-D object learning
    Duhoux, S
    Gschwind, M
    Vuilleumier, P
    Rentschler, I
    Schwartz, S
    PERCEPTION, 2005, 34 : 116 - 116
  • [36] A SYNTACTIC APPROACH TO 3-D OBJECT REPRESENTATION
    LIN, WC
    FU, KS
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (03) : 351 - 364
  • [37] A framework for statistical 3-D object recognition
    Paulus, D
    Hornegger, J
    Niemann, H
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1153 - 1157
  • [38] AUTOMATIC OBJECT SEGMENTATION WITH 3-D CAMERAS
    Liu, Haowei
    Philipose, Matthai
    Sun, Ming-Ting
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 569 - 572
  • [39] 3-D OBJECT RECOGNITION BY GRAPH MATCHING
    LIU, YC
    MA, SD
    INTELLIGENT AUTONOMOUS SYSTEMS 2, VOLS 1 AND 2, 1989, : 918 - 921
  • [40] Representation and classification of 3-D objects
    Csákány, P
    Wallace, AM
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (04): : 638 - 647