Semi-Supervised Fuzzy c-Means Algorithm by Revising Dissimilarity Between Data

被引:3
|
作者
Kanzawa, Yuchi [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Shibaura Inst Technol, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Univ Tsukuba, Tsukuba, Ibaraki 3058573, Japan
关键词
semi-supervised clustering; kernel; relational clustering; fuzzy c-means;
D O I
10.20965/jaciii.2011.p0095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose two approaches for semi-supervised FCM with soft pairwise constraints. One applies NERFCM to the revised dissimilarity matrix by pairwise constraints. The other applies K-FCM with a dissimilarity-based kernel function, revising the dissimilarity matrix based on whether data in the same cluster may be close to each other or the data in the different clusters may be apart from each other. Propagating given pairwise constraints to unconstrained data is done when given constraints are not sufficient to obtain the desired clustering result. Numerical examples show that the proposed algorithms are valid.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [1] Semi-supervised fuzzy c-means clustering of biological data
    Ceccarelli, M
    Maratea, A
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 259 - 266
  • [2] On Semi-Supervised Fuzzy c-Means Clustering
    Yasunori, Endo
    Yukihiro, Hamasuna
    Makito, Yamashiro
    Sadaaki, Miyamoto
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1119 - +
  • [3] Objective Function of Semi-Supervised Fuzzy C-Means Clustering Algorithm
    Li, Chunfang
    Liu, Lianzhong
    Jiang, Wenli
    2008 6TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1-3, 2008, : 704 - +
  • [4] Text Categorization using the Semi-Supervised Fuzzy c-Means Algorithm
    Benkhalifa, M
    Bensaid, A
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 561 - 565
  • [5] Safe Semi-Supervised Fuzzy C-Means Clustering
    Gan, Haitao
    IEEE ACCESS, 2019, 7 : 95659 - 95664
  • [6] On Semi-supervised Modified Fuzzy C-Means Algorithm for Remote Sensing Clustering
    Han Min
    Fan Jianchao
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 4, 2008, : 554 - 558
  • [7] On Using Genetic Algorithm for Initialising Semi-supervised Fuzzy c-Means Clustering
    Lai, Daphne Teck Ching
    Garibaldi, Jonathan M.
    COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS, CIIS 2016, 2017, 532 : 3 - 14
  • [8] Predicting cancer subtypes from microarray data using semi-supervised fuzzy C-means algorithm
    Deepthi, P. S.
    Thampi, Sabu M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (04) : 2797 - 2805
  • [9] A new Semi-Supervised Intuitionistic Fuzzy C-means Clustering
    Arora, J.
    Tushir, M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2020, 7 (24) : 1 - 11
  • [10] Semi-supervised kernel-based fuzzy c-means
    Zhang, DQ
    Tan, KR
    Chen, SC
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 1229 - 1234