SINGLE-VALUED MOTIVIC PERIODS AND MULTIPLE ZETA VALUES

被引:91
作者
Brown, Francis [1 ]
机构
[1] CNRS, IHES, Paris, France
关键词
D O I
10.1017/fms.2014.18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The values at 1 of single-valued multiple polylogarithms span a certain subalgebra of multiple zeta values. The properties of this algebra are studied from the point of view of motivic periods.
引用
收藏
页数:37
相关论文
共 32 条
[1]  
Andre Y., 2004, PANORAMAS SYNTHESES, V17
[2]  
Andre Y., ARXIV08052569
[3]  
[Anonymous], 1989, MATH SCI RES I PUBL
[4]   NOTES ON MOTIVIC COHOMOLOGY [J].
BEILINSON, A ;
MACPHERSON, R ;
SCHECHTMAN, V .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :679-710
[5]  
Beilinson A., 1990, GROTHENDIECK FESCHTR, P131
[6]  
Beilinson A., 1994, P S PURE MATH 2, V55
[7]   Coleman integration using the Tannakian formalism [J].
Besser, A .
MATHEMATISCHE ANNALEN, 2002, 322 (01) :19-48
[8]   Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops [J].
Broadhurst, DJ ;
Kreimer, D .
PHYSICS LETTERS B, 1997, 393 (3-4) :403-412
[9]  
Brown F., 2014, P ICM
[10]  
Brown F, DEPTH GRADED MOTIVIC