AN ADAPTIVE FINITE-ELEMENT STRATEGY FOR THE 3-DIMENSIONAL TIME-DEPENDENT NAVIER-STOKES EQUATIONS

被引:37
作者
BANSCH, E [1 ]
机构
[1] UNIV FREIBURG,INST ANGEW MATH,W-7800 FREIBURG,GERMANY
关键词
ADAPTIVITY; LOCAL MESH REFINEMENT; NAVIER-STOKES EQUATIONS;
D O I
10.1016/0377-0427(91)90224-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive strategy for three-dimensional time-dependent problems in the context of the FEM is presented. The basic tools are a mechanism for local refinement and coarsening of simplical meshes and an unexpensive error-estimator. The algorithm for local grid modification is based on bisecting tetrahedra. The method is applied to the Navier-Stokes equations.
引用
收藏
页码:3 / 28
页数:26
相关论文
共 50 条
[41]   A postprocessing mixed finite element method for the Navier-Stokes equations [J].
Liu, Qingfang ;
Hou, Yanren .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (06) :461-475
[42]   A finite element variational multiscale method for the Navier-Stokes equations [J].
John, V ;
Kaya, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05) :1485-1503
[43]   Parallel iterative finite-element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions [J].
Zhou, Kangrui ;
Shang, Yueqiang .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (05) :509-530
[44]   A two-level finite-element discretization of the stream function form of the Navier-Stokes equations [J].
Fairag, F .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (02) :117-127
[45]   FINITE ELEMENT DISCRETIZATION OF THE STOKES AND NAVIER-STOKES EQUATIONS WITH BOUNDARY CONDITIONS ON THE PRESSURE [J].
Bernardi, Christine ;
Rebollo, Tomas Chacon ;
Yakoubi, Driss .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) :1256-1279
[46]   Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations [J].
Tobiska, L ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :107-127
[47]   CONVERGENCE OF TIME-AVERAGED STATISTICS OF FINITE ELEMENT APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS [J].
John, V. ;
Layton, W. ;
Manica, C. C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) :151-179
[48]   Adaptive meshless local maximum-entropy finite element method for Navier-Stokes equations [J].
Young, D. L. ;
Shih, C-L ;
Yen, L. J. ;
Chu, C-R .
JOURNAL OF MECHANICS, 2024, 40 :475-490
[49]   Numerical analysis of the SAV scheme for the EMAC formulation of the time-dependent Navier-Stokes equations [J].
Han, Wei-Wei ;
Jiang, Yao-Lin ;
Miao, Zhen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
[50]   Enhancing the viscosity-splitting method to solve the time-dependent Navier-Stokes equations [J].
Yakoubi, D. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 123