AN ADAPTIVE FINITE-ELEMENT STRATEGY FOR THE 3-DIMENSIONAL TIME-DEPENDENT NAVIER-STOKES EQUATIONS

被引:37
作者
BANSCH, E [1 ]
机构
[1] UNIV FREIBURG,INST ANGEW MATH,W-7800 FREIBURG,GERMANY
关键词
ADAPTIVITY; LOCAL MESH REFINEMENT; NAVIER-STOKES EQUATIONS;
D O I
10.1016/0377-0427(91)90224-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive strategy for three-dimensional time-dependent problems in the context of the FEM is presented. The basic tools are a mechanism for local refinement and coarsening of simplical meshes and an unexpensive error-estimator. The algorithm for local grid modification is based on bisecting tetrahedra. The method is applied to the Navier-Stokes equations.
引用
收藏
页码:3 / 28
页数:26
相关论文
共 50 条
[1]   AN HP ADAPTIVE STRATEGY FOR FINITE-ELEMENT APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS [J].
ODEN, JT ;
WU, WH ;
LEGAT, V .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (8-9) :831-851
[2]   A FINITE-ELEMENT SOLUTION OF THE TIME-DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING A MODIFIED VELOCITY CORRECTION METHOD [J].
REN, G ;
UTNES, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 17 (05) :349-364
[3]   A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations [J].
Shan, Li ;
Hou, Yanren .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) :85-99
[4]   Viscosity explicit analysis for finite element methods of time-dependent Navier-Stokes equations [J].
Xie, Cong ;
Wang, Kun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
[5]   A SUBGRID STABILIZING POSTPROCESSED MIXED FINITE ELEMENT METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J].
Shang, Yueqiang ;
Zhang, Qihui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06) :3119-3142
[6]   A stabilized fractional-step finite element method for the time-dependent Navier-Stokes equations [J].
Shang, Yueqiang ;
Liu, Qing .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (01) :61-76
[7]   Stabilized finite-element method for the stationary Navier-Stokes equations [J].
Yinnian He ;
Aiwen Wang ;
Liquan Mei .
Journal of Engineering Mathematics, 2005, 51 :367-380
[8]   Stabilized finite-element method for the stationary Navier-Stokes equations [J].
He, YN ;
Wang, AW ;
Mei, LQ .
JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) :367-380
[9]   The postprocessed mixed finite-element method for the Navier-Stokes equations [J].
Ayuso, B ;
García-Archilla, B ;
Novo, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1091-1111
[10]   Superconvergent analysis of a nonconforming mixed finite element method for time-dependent damped Navier-Stokes equations [J].
Qian, Liu ;
Dongyang, Shi .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01)