Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

被引:0
|
作者
Mirzaie, Reza [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2018年 / 13卷 / 02期
关键词
Manifold; Fractal; Box dimension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If M is a compact Riemannian manifold and C(M, R) is the set of all real valued continuous functions defined on M, then we show that for typical element f is an element of C(M, R), (dim) over bar (B) (graph(f)) is as big as possible and for typical f is an element of C(M, R), (dim) under bar (B)(graph(f)) is as small as possible.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 50 条
  • [31] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [32] BOX DIMENSION OF THE GRAPHS OF THE GENERALIZED WEIERSTRASS-TYPE FUNCTIONS
    Ren, Haojie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (10) : 3830 - 3838
  • [33] On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions
    Attia, Najmeddine
    Jebali, Hajer
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3453 - 3474
  • [34] Fractal boundaries are not typical
    Bloch, W. L.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 533 - 539
  • [35] Fractal Dimension for IFS-Attractors Revisited
    Fernandez-Martinez, M.
    Guirao, J. L. G.
    Vera Lopez, Juan Antonio
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (03) : 709 - 722
  • [36] Fractal Dimension for IFS-Attractors Revisited
    M. Fernández-Martínez
    J. L. G. Guirao
    Juan Antonio Vera López
    Qualitative Theory of Dynamical Systems, 2018, 17 : 709 - 722
  • [37] Fractal Analysis of Proteins Based on Box Dimension
    Peng Xin
    Zhang Yuwei
    Qi Wei
    Su Rongxin
    Wu Shaomin
    He Zhimin
    ACTA CHIMICA SINICA, 2010, 68 (11) : 1143 - 1147
  • [38] Counterexamples in theory of fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Nowak, Magdalena
    Sanchez-Granero, M. A.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 210 - 223
  • [39] Fractal dimension for fractal structures: A Hausdorff approach
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1825 - 1837
  • [40] Box dimension of fractal attractors and their numerical computation
    Freiberg, Uta
    Kohl, Stefan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95