Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

被引:0
|
作者
Mirzaie, Reza [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
Manifold; Fractal; Box dimension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If M is a compact Riemannian manifold and C(M, R) is the set of all real valued continuous functions defined on M, then we show that for typical element f is an element of C(M, R), (dim) over bar (B) (graph(f)) is as big as possible and for typical f is an element of C(M, R), (dim) under bar (B)(graph(f)) is as small as possible.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 50 条
  • [31] Fractal dimension of Hadamard fractional integral of continuous functions with countable UV points
    Wu, Xiao Er
    Shun-Liang, Yong
    Zhu, Ya Hui
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1636 - 1641
  • [32] FRACTAL DIMENSION OF MULTIVARIATE α-FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, Megha
    Agrawal, Vishal
    Som, Tanmoy
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [33] Fractal Dimension of Fractal Functions on the Real Projective Plane
    Hossain, Alamgir
    Akhtar, Md. Nasim
    Navascues, Maria A.
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [34] A note on stability and fractal dimension of bivariate α-fractal functions
    Agrawal, V.
    Som, T.
    Verma, S.
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1811 - 1833
  • [35] FRACTAL DIMENSION OF MULTIVARIATE α -FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, MEGHA
    Agrawal, VISHAL
    Som, TANMOY
    Fractals, 2022, 30 (07):
  • [36] Fractal Dimension of α-Fractal Functions Without Endpoint Conditions
    Gurubachan
    Chandramouli, V. V. M. S.
    Verma, S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [37] A note on stability and fractal dimension of bivariate α-fractal functions
    V. Agrawal
    T. Som
    S. Verma
    Numerical Algorithms, 2023, 93 : 1811 - 1833
  • [38] FRACTAL DIMENSION OF A SPECIAL CONTINUOUS FUNCTION
    Liu, Ning
    Yao, Kui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [39] TYPICAL DIMENSION OF THE GRAPH OF CERTAIN FUNCTIONS
    SCHMELING, J
    WINKLER, R
    MONATSHEFTE FUR MATHEMATIK, 1995, 119 (04): : 303 - 320