Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model

被引:0
作者
Kim, Seung-Gu [1 ]
机构
[1] Sangji Univ, Dept Data & Informat, 83 Usan Dong, Wonju 220702, South Korea
关键词
Saliency parameter; variable selection; clustering; normal mixture model; EM algorithm;
D O I
10.5351/KJAS.2013.26.5.821
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components and the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.
引用
收藏
页码:821 / 834
页数:14
相关论文
共 50 条
  • [41] Model Structure Identification of Hybrid Dynamical Systems based on Unsupervised Clustering and Variable Selection
    Duc-An Nguyen
    Nwadiuto, Jude
    Okuda, Hiroyuki
    Suzuki, Tatsuya
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1090 - 1095
  • [42] Variable selection in penalized model-based clustering via regularization on grouped parameters
    Xie, Benhuai
    Pan, Wei
    Shen, Xiaotong
    [J]. BIOMETRICS, 2008, 64 (03) : 921 - 930
  • [43] SelvarClustMV: Variable selection approach in model-based clustering allowing for missing values
    Maugis-Rabusseau, Cathy
    Martin-Magniette, Marie-Laure
    Pelletier, Sandra
    [J]. JOURNAL OF THE SFDS, 2012, 153 (02): : 21 - 36
  • [44] Robust Bayesian model selection for variable clustering with the Gaussian graphical model
    Daniel Andrade
    Akiko Takeda
    Kenji Fukumizu
    [J]. Statistics and Computing, 2020, 30 : 351 - 376
  • [45] Robust Bayesian model selection for variable clustering with the Gaussian graphical model
    Andrade, Daniel
    Takeda, Akiko
    Fukumizu, Kenji
    [J]. STATISTICS AND COMPUTING, 2020, 30 (02) : 351 - 376
  • [46] A distribution-based LASSO for a general single-index model
    Wang Tao
    Zhu LiXing
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 109 - 130
  • [47] Robust mixture model-based clustering with genetic algorithm approach
    Nguyen Duc Thang
    Chen, Lihui
    Chan, Chee Keong
    [J]. INTELLIGENT DATA ANALYSIS, 2011, 15 (03) : 357 - 373
  • [48] Variable selection for model-based clustering using the integrated complete-data likelihood
    Matthieu Marbac
    Mohammed Sedki
    [J]. Statistics and Computing, 2017, 27 : 1049 - 1063
  • [49] A comparative study of the K-means algorithm and the normal mixture model for clustering:: Univariate case
    Qiu, Dingxi
    Tamhane, Ajit C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (11) : 3722 - 3740
  • [50] A multivariate-based variable selection framework for clustering traffic conflicts in a brazilian freeway
    Rocha, Miriam
    Anzanello, Michel
    Caleffi, Felipe
    Cybis, Helena
    Yamashita, Gabrielli
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2019, 132