GENERATING FUNCTIONS IN SPLINE INTERPOLATION WITH EQUIDISTANT KNOTS

被引:0
作者
MERZ, G [1 ]
机构
[1] UNIV ERLANGEN NURNBERG,INST ANGEW MATH 1,MARTENS STR 1,D-8520 ERLANGEN,WEST GERMANY
关键词
D O I
10.1007/BF02293105
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
[11]   ON THE INTERPOLATION ERROR FOR SPLINE FUNCTIONS [J].
ARCANGELI, R ;
RABUT, C .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1986, 20 (02) :191-201
[12]   CUBIC SPLINE FUNCTIONS THAT VANISH AT ALL KNOTS [J].
DEBOOR, C .
ADVANCES IN MATHEMATICS, 1976, 20 (01) :1-17
[13]   OPTIMAL CHOICE OF KNOTS FOR SPLINE APPROXIMATION OF FUNCTIONS [J].
LIGUN, AA ;
SHUMEIKO, AA .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (06) :18-21
[14]   CHEBYSHEV APPROXIMATION BY SPLINE FUNCTIONS WITH FREE KNOTS [J].
BRAESS, D .
NUMERISCHE MATHEMATIK, 1971, 17 (05) :357-&
[15]   Optimal knots allocation in the cubic and bicubic spline interpolation problems [J].
Idais, H. ;
Yasin, M. ;
Pasadas, M. ;
Gonzalez, P. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 :131-145
[16]   NUMERICAL PROCEDURES FOR INTERPOLATION BY SPLINE FUNCTIONS [J].
GREVILLE, TN .
SIAM REVIEW, 1964, 6 (03) :330-&
[17]   Refinable spline functions and Hermite interpolation [J].
Goodman, TNT .
MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, :147-161
[18]   Hermitian spline interpolation for bivariate functions [J].
Scheffold, E .
ACTA MATHEMATICA HUNGARICA, 2001, 92 (04) :347-358
[19]   CHEBYSHEV-APPROXIMATION BY SPLINE FUNCTIONS WITH FREE KNOTS [J].
MULANSKY, B .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (01) :95-105
[20]   Generating functions, Fibonacci numbers and rational knots [J].
Stoimenow, A. .
JOURNAL OF ALGEBRA, 2007, 310 (02) :491-525