Convergence and summability of cardinal sine series

被引:0
作者
Bailey, B. A. [1 ]
Madych, W. R. [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
来源
JAEN JOURNAL ON APPROXIMATION | 2018年 / 10卷 / 01期
关键词
Bernstein class; cardinal series; sampling theory; summability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of summability methods for the classical cardinal sine series that are related to the Bernstein-Boas representation of entire functions of exponential type less than pi. We provide conditions that ensure regularity of the methods, prove a Tauberian type theorem, and give an example of a function in the Bernstein class B-pi whose samples do not give rise to a convergent cardinal sine series and are not summable via the methods that are considered here.
引用
收藏
页码:49 / 72
页数:24
相关论文
共 26 条
  • [1] Functions of exponential type and the cardinal series
    Bailey, B. A.
    Madych, W. R.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2014, 181 : 54 - 72
  • [2] Convergence of Classical Cardinal Series and Band Limited Special Functions
    Bailey, B. A.
    Madych, W. R.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) : 1207 - 1228
  • [3] Boas R., 1954, ENTIRE FUNCTIONS
  • [4] Interpolation and Sampling: ET Whittaker, K. Ogura and Their Followers
    Butzer, P. L.
    Ferreira, P. J. S. G.
    Higgins, J. R.
    Saitoh, S.
    Schmeisser, G.
    Stens, R. L.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 320 - 354
  • [5] Butzer P. L., 1985, AEQUATIONES MATH, V28, P305, DOI [10.1007/BF02189424, DOI 10.1007/BF02189424]
  • [6] Butzer PL, 2000, DEVELOPMENT OF MATHEMATICS 1950-2000, P193
  • [7] Estrada R., 1995, APPL ANAL, V59, P271
  • [8] Higgins J.R., 1996, SAMPLING THEORY FOUR
  • [9] 5 SHORT STORIES ABOUT THE CARDINAL SERIES
    HIGGINS, JR
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) : 45 - 89
  • [10] Hormander L., 1969, LINEAR PARTIAL DIFFE, VThird