scKINETICS: inference of regulatory velocity with single-cell transcriptomics data

被引:0
作者
Burdziak, Cassandra [1 ]
Zhao, Chujun Julia [1 ,2 ]
Haviv, Doron [1 ]
Alonso-Curbelo, Direna [3 ,4 ]
Lowe, Scott W. [4 ,5 ]
Pe'er, Dana [1 ,5 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, 408 E 69th St, New York, NY 10021 USA
[2] Columbia Univ, Dept Biomed Engn, 1210 Amsterdam Ave, New York, NY 10027 USA
[3] Barcelona Inst Sci & Technol BIST, Inst Res Biomed IRB Barcelona, Carrer Baldiri Reixac 10, Barcelona 08028, Spain
[4] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Canc Biol & Genet Program, 408 E 69th St, New York, NY 10021 USA
[5] Howard Hughes Med Inst, 4000 Jones Bridge Rd, Chevy Chase, MD 20815 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MotivationTranscriptional dynamics are governed by the action of regulatory proteins and are fundamental to systems ranging from normal development to disease. RNA velocity methods for tracking phenotypic dynamics ignore information on the regulatory drivers of gene expression variability through time.ResultsWe introduce scKINETICS (Key regulatory Interaction NETwork for Inferring Cell Speed), a dynamical model of gene expression change which is fit with the simultaneous learning of per-cell transcriptional velocities and a governing gene regulatory network. Fitting is accomplished through an expectation-maximization approach designed to learn the impact of each regulator on its target genes, leveraging biologically motivated priors from epigenetic data, gene-gene coexpression, and constraints on cells' future states imposed by the phenotypic manifold. Applying this approach to an acute pancreatitis dataset recapitulates a well-studied axis of acinar-to-ductal transdifferentiation whilst proposing novel regulators of this process, including factors with previously appreciated roles in driving pancreatic tumorigenesis. In benchmarking experiments, we show that scKINETICS successfully extends and improves existing velocity approaches to generate interpretable, mechanistic models of gene regulatory dynamics.
引用
收藏
页码:I394 / I403
页数:10
相关论文
共 33 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   A gene-environment-induced epigenetic program initiates tumorigenesis [J].
Alonso-Curbelo, Direna ;
Ho, Yu-Jui ;
Burdziak, Cassandra ;
Maag, Jesper L. V. ;
Morris, John P. ;
Chandwani, Rohit ;
Chen, Hsuan-An ;
Tsanov, Kaloyan M. ;
Barriga, Francisco M. ;
Luan, Wei ;
Tasdemir, Nilgun ;
Livshits, Geulah ;
Azizi, Elham ;
Chun, Jaeyoung ;
Wilkinson, John E. ;
Mazutis, Linas ;
Leach, Steven D. ;
Koche, Richard ;
Pe'er, Dana ;
Lowe, Scott W. .
NATURE, 2021, 590 (7847) :642-648
[3]  
Argelaguet R, 2022, bioRxiv, DOI [10.1101/2022.06.15.496239, 10.1101/2022.06.15.496239, DOI 10.1101/2022.06.15.496239, 10.1101/2022.06.15.496239v1, DOI 10.1101/2022.06.15.496239V1]
[4]   Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy [J].
Bachireddy, Pavan ;
Azizi, Elham ;
Burdziak, Cassandra ;
Nguyen, Vinhkhang N. ;
Ennis, Christina S. ;
Maurer, Katie ;
Park, Cameron Y. ;
Choo, Zi-Ning ;
Li, Shuqiang ;
Gohil, Satyen H. ;
Ruthen, Neil G. ;
Ge, Zhongqi ;
Keskin, Derin B. ;
Cieri, Nicoletta ;
Livak, Kenneth J. ;
Kim, Haesook T. ;
Neuberg, Donna S. ;
Soiffer, Robert J. ;
Ritz, Jerome ;
Alyea, Edwin P. ;
Pe'er, Dana ;
Wu, Catherine J. .
CELL REPORTS, 2021, 37 (06)
[5]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[6]  
Burdziak C, 2022, bioRxiv, DOI [10.1101/2022.07.26.501417, DOI 10.1101/2022.07.26.501417, 10.1101/2022.07.26.501417v1]
[7]   Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures [J].
Chan, Thalia E. ;
Stumpf, Michael P. H. ;
Babtie, Ann C. .
CELL SYSTEMS, 2017, 5 (03) :251-+
[8]   DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations [J].
Chen, Zhanlin ;
King, William C. ;
Hwang, Aheyon ;
Gerstein, Mark ;
Zhang, Jing .
SCIENCE ADVANCES, 2022, 8 (48)
[9]   Single-cell gene regulation network inference by large-scale data integration [J].
Dong, Xin ;
Tang, Ke ;
Xu, Yunfan ;
Wei, Hailin ;
Han, Tong ;
Wang, Chenfei .
NUCLEIC ACIDS RESEARCH, 2022, 50 (21) :E126
[10]  
Ester M., 1996, P 2 INT C KNOWL DISC, V1996, P226, DOI DOI 10.5555/3001460.3001507