2-WEIGHT NORM INEQUALITIES FOR THE FRACTIONAL MAXIMAL OPERATOR ON SPACES OF HOMOGENEOUS TYPE

被引:16
作者
BERNARDIS, A
SALINAS, O
机构
关键词
D O I
10.4064/sm-108-3-201-207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization of the pairs of weights (v, w), with w in the class A(infinity) of Muckenhoupt, for which the fractional maximal function is a bounded operator from L(p) (X, vdmu) to L(q) (X, wdmu) when 1 < p less-than-or-equal-to q < infinity and X is a space of homogeneous type.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 11 条
[1]   WEIGHTED NORM INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON SPACES OF HOMOGENEOUS TYPE [J].
AIMAR, H ;
MACIAS, RA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (02) :213-216
[2]   INEQUALITIES FOR MAXIMAL FUNCTION RELATIVE TO A METRIC [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1976, 57 (03) :297-306
[3]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[4]  
COIFMAN RR, 1971, LECTURE NOTES MATH, V242
[5]  
MACIAS R, 1988, CUADERNOS MATEMATICA
[6]   LIPSCHITZ FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
MACIAS, RA ;
SEGOVIA, C .
ADVANCES IN MATHEMATICS, 1979, 33 (03) :257-270
[7]  
Macias RA., 1981, TRABAJOS MATEMATICA, V32, P1
[8]   WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :261-274
[10]   WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS ON EUCLIDEAN AND HOMOGENEOUS SPACES [J].
SAWYER, E ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :813-874