LOW-ANGLE RADAR TRACKING USING RADIAL BASIS FUNCTION NEURAL-NETWORK

被引:4
作者
WONG, T [1 ]
LO, T [1 ]
LEUNG, H [1 ]
LITVA, J [1 ]
BOSSE, E [1 ]
机构
[1] DEF RES ESTAB,OTTAWA K1A 0Z4,ONTARIO,CANADA
关键词
RADAR TRACKING; NEURAL NETS;
D O I
10.1049/ip-f-2.1993.0045
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The authors apply the radial basis function (RBF) neural network to low-angle radar tracking. Computer simulations show that the RBF network is capable of tracking both stationary and moving targets with high accuracy. As well, the tracking performance of the RBF network is evaluated under different signal-to-noise ratio situations. Furthermore, real-life data are used to test the RBF network. The results demonstrate the robustness and effectiveness of the network in terms of its independence of array errors and of the nature of the noise background,
引用
收藏
页码:323 / 328
页数:6
相关论文
共 12 条
[1]  
BARTON DK, 1974, P IEEE, V62
[2]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[3]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[4]  
LAPEDES AS, 1987, LAUR87 LOS AL NAT LA
[5]  
Lippman R. P., 1987, IEEE ASSP MAGAZI APR, P4
[6]   LOW-ANGLE TRACKING USING MULTIFREQUENCY SAMPLED APERTURE RADAR [J].
LO, T ;
LITVA, J .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (05) :797-805
[7]   INTERPOLATION OF SCATTERED DATA - DISTANCE MATRICES AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
MICCHELLI, CA .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (01) :11-22
[8]   NETWORKS FOR APPROXIMATION AND LEARNING [J].
POGGIO, T ;
GIROSI, F .
PROCEEDINGS OF THE IEEE, 1990, 78 (09) :1481-1497
[9]  
POWELL M, 1985, IMA C ALGORITHM APPR
[10]  
SCHMIDT R, 1979, RADCTR9763 ROM AIR D