THE SCHUR MULTIPLIER OF PAIRS OF NONABELIAN GROUPS OF ORDER P-4

被引:0
作者
Nawi, Adnin Afifi [1 ]
Ali, Nor Muhainiah Mohd [1 ]
Sarmin, Nor Haniza [1 ]
Rashid, Samad [2 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Utm Johor Bahru 81310, Johor, Malaysia
[2] Islamic Azad Univ, Fac Sci, Dept Math, Firoozkooh Branch, Tehran, Iran
来源
JURNAL TEKNOLOGI | 2016年 / 78卷 / 3-2期
关键词
Schur multiplier; pair of groups; normal subgroup; nonabelian group;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let (G,N) be a pair of groups where G is any group and N is a normal subgroup of G, then the Schur multiplier of pairs of groups is a functorial abelian group. The notion of the Schur multiplier of pairs of groups is an extension from the Schur multiplier of a group G. In this research, the Schur multiplier of pairs of finite nonabelian groups of order p(4), where p is an odd prime, is determined.
引用
收藏
页码:39 / 43
页数:5
相关论文
共 10 条
[1]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[2]  
Burnside W., 1955, THEORY GROUPS FINITE
[3]   The Schur multiplier of a pair of groups [J].
Ellis, G .
APPLIED CATEGORICAL STRUCTURES, 1998, 6 (03) :355-371
[4]   ON THE NUMBER OF AUTOMORPHISMS OF A FINITE GROUP [J].
GREEN, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 237 (1211) :574-581
[5]  
Karpilovsky G., 1987, THE SCHUR MULTIPLIER
[6]  
Kim S. O., 2001, COMMUNICATIONS KOREA, V16, P205
[7]   Some properties on the Schur multiplier of a pair of groups [J].
Moghaddam, Mohammad Reza R. ;
Salemkar, Ali Reza ;
Chiti, Kazem .
JOURNAL OF ALGEBRA, 2007, 312 (01) :1-8
[8]  
Mohammadzadeh F, 2013, INT J GROUP THEORY, V2, P1
[9]  
Schur J, 1904, J REINE ANGEW MATH, V127, P20
[10]  
Visscher M. P., 1998, THESIS