Key Assignment Scheme with Authenticated Encryption

被引:2
作者
Kandele, Suyash [1 ]
Paul, Souradyuti [1 ]
机构
[1] Indian Inst Technol Bhilai, Raipur, Madhya Pradesh, India
关键词
Key assignment schemes (KAS); Message-locked encryption (MLE); Authenticated encryption (AE); Hierarchial access control; Partially ordered set; Totally ordered set;
D O I
10.13154/tosc.v2018.i4.150-196
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Key Assignment Scheme (KAS) is a well-studied cryptographic primitive used for hierarchical access control (HAC) in a multilevel organisation where the classes of people with higher privileges can access files of those with lower ones. Our first contribution is the formalization of a new cryptographic primitive, namely, KAS-AE that supports the aforementioned HAC solution with an additional authenticated encryption property. Next, we present three efficient KAS-AE schemes that solve the HAC and the associated authenticated encryption problem more efficiently - both with respect to time and memory - than the existing solutions that achieve it by executing KAS and AE separately. Our first KAS-AE construction is built by using the cryptographic primitive MLE (EUROCRYPT 2013) as a black box; the other two constructions (which are the most efficient ones) have been derived by cleverly tweaking the hash function FP (Indocrypt 2012) and the authenticated encryption scheme APE (FSE 2014). This high efficiency of our constructions is critically achieved by using two techniques: design of a mechanism for reverse decryption used for reduction of time complexity, and a novel key management scheme for optimizing storage requirements when organizational hierarchy forms an arbitrary access graph (instead of a linear graph). We observe that constructing a highly efficient KAS-AE scheme using primitives other than MLE, FP and APE is a non-trivial task. We leave it as an open problem. Finally, we provide a detailed comparison of all the KAS-AE schemes.
引用
收藏
页码:150 / 196
页数:47
相关论文
共 60 条
[1]  
Abadi M, 2013, LECT NOTES COMPUT SC, V8042, P374, DOI 10.1007/978-3-642-40041-4_21
[2]   sp-AELM: Sponge Based Authenticated Encryption Scheme for Memory Constrained Devices [J].
Agrawal, Megha ;
Chang, Donghoon ;
Sanadhya, Somitra .
INFORMATION SECURITY AND PRIVACY (ACISP 2015), 2015, 9144 :451-468
[3]   CRYPTOGRAPHIC SOLUTION TO A PROBLEM OF ACCESS-CONTROL IN A HIERARCHY [J].
AKL, SG ;
TAYLOR, PD .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1983, 1 (03) :239-248
[4]  
Alizadeh Javad, 2015, ARTEMIA, V1
[5]  
Andreeva E., 2014, LNCS, V8540, P168
[6]  
Atallah MJ, 2007, LECT NOTES COMPUT SC, V4734, P515
[7]   Dynamic and Efficient Key Management for Access Hierarchies [J].
Atallah, Mikhail J. ;
Blanton, Marina ;
Fazio, Nelly ;
Frikken, Keith B. .
ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY, 2009, 12 (03)
[8]  
ATALLAH MJ, 2005, P 12 ACM C COMP COMM, P190, DOI DOI 10.1016/J.IPL.2007.08.017]
[9]  
ATENIESE G, 2006, P 13 ACM C COMP COMM, P288
[10]   A note on time-bound hierarchical key assignment schemes [J].
Ateniese, Giuseppe ;
De Santis, Alfredo ;
Ferrara, Anna Lisa ;
Masucci, Barbara .
INFORMATION PROCESSING LETTERS, 2013, 113 (5-6) :151-155