MULTIPLICITY-FREE U(Q)(N) COUPLING-COEFFICIENTS

被引:16
作者
ALISAUSKAS, S [1 ]
SMIRNOV, F [1 ]
机构
[1] Univ Nacl Autonoma Mexico, INST FIS, MEXICO CITY 01000, DF, MEXICO
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 17期
关键词
D O I
10.1088/0305-4470/27/17/025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coupling (Wigner-Clebsch-Gordan) coefficients of the unitary quantum algebras u(q)(n) are considered. The tensorial properties of the generator powers and their ordered products, used in the explicit projectors and weight lowering procedures, are established. Different expressions for the multiplicity-free isofactors of u(q)(n) coupling coefficients (those coupling an arbitrary and symmetric representations) are derived. Explicit expression of the arbitrary isofactors in terms of their boundary values are proposed. Proportionality of the semistretched isofactors to the stretched q-recoupling coefficients of u(q)n - 1) (q-analogures of 9 j-symbols) is demonstrated. The stretched isofactors of u(q)(3) are expressed in terms of Clebsch-Gordan coefficients of u(q)(2).
引用
收藏
页码:5925 / 5939
页数:15
相关论文
共 38 条
[2]  
Alisauskas S. J., 1983, Soviet Journal of Particles and Nuclei, V14, P563
[3]   SYMMETRIC TENSOR OPERATORS OF UNITARY GROUPS [J].
ALISAUSKAS, SJ ;
JUCYS, AAA ;
JUCYS, AP .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (09) :1329-+
[4]  
ALISAUSKAS SJ, 1982, LIET FIZ RINKINYS, V22, P13
[5]  
ALISHAUS.SI, 1971, DOKL AKAD NAUK SSSR+, V197, P804
[6]  
Alishauskas S., 1969, Litovskii Fizicheskii Sbornik, V9, P641
[7]   ON Q-TENSOR OPERATORS FOR QUANTUM GROUPS [J].
BIEDENHARN, LC ;
TARLINI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :271-278
[8]  
BIEDENHARN LC, 1990, LECT NOTES PHYS, V0370, P00067
[9]   EVALUATION OF MULTIPLICITY-FREE WIGNER COEFFICIENTS OF U(N) [J].
CHACON, E ;
BIEDENHARN, LC ;
CIFTAN, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (05) :577-+
[10]   THE PATTERN CALCULUS FOR TENSOR-OPERATORS IN QUANTUM GROUPS [J].
GOULD, M ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) :3613-3635