TIME-DEPENDENT VARIATIONAL METHOD FOR SINE-GORDON QUANTUM-FIELD THEORY

被引:0
|
作者
SINHA, A
ROYCHOUDHURY, R
机构
[1] Indian Statistical Institute, Calcutta
关键词
D O I
10.1007/BF00671966
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The sine-Gordon model in 1 + 1 dimensions is studied within the Schrodinger framework for field theory. In particular we evaluate the effective potential and examine the finiteness of m(t), the soliton mass, for all t.
引用
收藏
页码:1961 / 1971
页数:11
相关论文
共 50 条
  • [31] Sine-Gordon breather form factors and quantum field equations
    Babujian, H
    Karowski, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (43): : 9081 - 9104
  • [32] A NONEQUILIBRIUM TIME-DEPENDENT FUNCTIONAL THEORY-BASED ON LIOUVILLEAN QUANTUM-FIELD DYNAMICS
    RAJAGOPAL, AK
    BUOT, FA
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, 56 (04) : 389 - 397
  • [33] The quantum sine-Gordon model with quantum circuits
    Roy, Ananda
    Schuricht, Dirk
    Hauschild, Johannes
    Pollmann, Frank
    Saleur, Hubert
    NUCLEAR PHYSICS B, 2021, 968
  • [34] Sine-Gordon mean-field theory of a Coulomb gas
    Diehl, Alexandre
    Barbosa, Marcia C.
    Levin, Yan
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (1-B pt B):
  • [35] On the Stochastic Sine-Gordon Model: An Interacting Field Theory Approach
    Bonicelli, Alberto
    Dappiaggi, Claudio
    Rinaldi, Paolo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (12)
  • [36] Particle-field duality in sine-Gordon theory.
    Smirnov, FA
    NUCLEAR PHYSICS B, 1996, : 326 - 332
  • [37] THE LATTICE QUANTUM SINE-GORDON MODEL
    IZERGIN, AG
    KOREPIN, VE
    LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (03) : 199 - 205
  • [38] Self-consistent time-dependent harmonic approximation for the sine-Gordon model out of equilibrium
    van Nieuwkerk, Yuri D.
    Essler, Fabian H. L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [39] GENERALIZED QUANTUM SINE-GORDON EQUATION AND ITS RELATION TO THIRRING MODEL IN QUANTUM FIELD-THEORY
    SKAGERSTAM, BSK
    PHYSICAL REVIEW D, 1976, 13 (10): : 2827 - 2831
  • [40] Quantum computing with sine-Gordon qubits
    Wang, Dong-Sheng
    PHYSICAL REVIEW B, 2019, 100 (02)