THE EQUALITY OF FRACTAL DIMENSION AND UNCERTAINTY DIMENSION FOR CERTAIN DYNAMIC-SYSTEMS

被引:16
|
作者
NUSSE, HE
YORKE, JA
机构
[1] UNIV GRONINGEN,FAC ECON WETENSCHAPPEN,WSN GEBOUW,9700 AV GRONINGEN,NETHERLANDS
[2] UNIV GRONINGEN,DEPT MATH,9700 AV GRONINGEN,NETHERLANDS
关键词
D O I
10.1007/BF02096562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
[MGOY] introduced the uncertainty dimension as a quantative measure for final state sensitivity in a system. In [MGOY] and [P] it was conjectured that the box-counting dimension equals the uncertainty dimension for basin boundaries in typical dynamical systems. In this paper our main result is that the box-counting dimension, the uncertainty dimension and the Hausdorff dimension are all equal for the basin boundaries of one and two dimensional systems, which are uniformly hyperbolic on their basin boundary. When the box-counting dimension of the basin boundary is large, that is, near the dimension of the phase space, this result implies that even a large decrease in the uncertainty of the position of the initial condition yields only a relatively small decrease in the uncertainty of which basin that initial point is in.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Uncertainty in fractal dimension estimated from power spectra and variograms
    Renjun Wen
    Richard Sinding-Larsen
    Mathematical Geology, 1997, 29 : 727 - 753
  • [32] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [33] Uncertainty in fractal dimension estimated from power spectra and variograms
    Wen, RJ
    SindingLarsen, R
    MATHEMATICAL GEOLOGY, 1997, 29 (06): : 727 - 753
  • [34] Relinquished Dimension: Equality
    Osin, Luis
    REICE-REVISTA IBEROAMERICANA SOBRE CALIDAD EFICACIA Y CAMBIO EN EDUCACION, 2008, 6 (01): : 104 - 118
  • [35] The spectral dimension of aggregates of tunable fractal dimension
    Thouy, R
    Jullien, R
    Benoit, C
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (50) : 9703 - 9714
  • [36] A new fractal dimension: The topological Hausdorff dimension
    Balka, Richard
    Buczolich, Zoltan
    Elekes, Marton
    ADVANCES IN MATHEMATICS, 2015, 274 : 881 - 927
  • [37] Spectral dimension of aggregates of tunable fractal dimension
    Thouy, R.
    Jullien, R.
    Benoit, C.
    Journal of Physics Condensed Matter, 1995, 7 (50):
  • [38] FRACTAL DIMENSION - LIMIT CAPACITY OR HAUSDORFF DIMENSION
    ESSEX, C
    NERENBERG, MAH
    AMERICAN JOURNAL OF PHYSICS, 1990, 58 (10) : 986 - 988
  • [39] MULTIOBJECTIVE STABILIZATION OF A CERTAIN CLASS OF DYNAMIC-SYSTEMS
    VEREMEI, EI
    KORCHANOV, VM
    AUTOMATION AND REMOTE CONTROL, 1988, 49 (09) : 1210 - 1219
  • [40] MODAL CONTROL OF CERTAIN FLEXIBLE DYNAMIC-SYSTEMS
    BALAS, MJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) : 450 - 462