ISOPERIMETRIC-INEQUALITIES AND FRACTIONAL SET SYSTEMS

被引:16
|
作者
BOLLOBAS, B [1 ]
LEADER, I [1 ]
机构
[1] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1016/0097-3165(91)90022-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Ω be the probability space of all 0-1 sequences of length n, with P((ai)1n) = pΣa(1 - p)n - Σa. For a set A ⊂ Ω and a natural number t, let A(t) be the set of sequences with Hamming distance at most t from A. The main aim of this paper is to prove that if A is a down-set and P(A)≥σkr=0 ( n r) pr (1 - p) n-r then P(A(t))≥σk+1r=0 ( n r) pr (1 - p)n-r. This result generalises Harper's theorem on the isoperimetric inequality in the cube. © 1991.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条