A COLLOCATION ALGORITHM FOR CALCULATING THE PERIODIC-SOLUTIONS OF NONLINEAR OSCILLATORS

被引:9
作者
BUONOMO, A
机构
[1] Istituto di Ingegneria Elettronica, Universita' di Salerno, Salerno, I-84081, Baronissi
关键词
D O I
10.1002/cta.4490200202
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An approximation method is given for calculating the periodic solutions of non-linear oscillators based upon the well-known method of collocation, which belongs to the class of projection methods. Unlike available techniques, the method leads to a simple and efficient algorithmic procedure which consists of solving a system of non-linear equations given in a simple explicit form. To demonstrate the effectiveness of the proposed algorithm, the results of some typical oscillator circuits are provided.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1981, INTRO NUMERICAL METH
[2]   COMPUTER ALGORITHM TO DETERMINE STEADY-STATE RESPONSE OF NONLINEAR OSCILLATORS [J].
APRILLE, TJ ;
TRICK, TN .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (04) :354-&
[3]  
Brigham E. O., 1974, FAST FOURIER TRANSFO
[4]   ON THE EXISTENCE AND UNIQUENESS OF STABLE QUASI-SINUSOIDAL OSCILLATIONS [J].
BUONOMO, A ;
DIBELLO, C ;
GRECO, O .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1985, 13 (04) :327-335
[5]  
Chua L. O., 1975, COMPUTER AIDED ANAL
[6]   NON-LINEAR OSCILLATION VIA VOLTERRA SERIES [J].
CHUA, LO ;
TANG, YS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (03) :150-168
[7]  
JOHNSON LW, 1982, NUMERICAL ANAL
[8]   A MODIFIED NEWTON METHOD FOR THE STEADY-STATE ANALYSIS [J].
KAKIZAKI, M ;
SUGAWARA, T .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1985, 4 (04) :662-667
[9]  
KUNDERT KS, 1988, ANALOG METHODS COMPU, P169
[10]   PIECEWISE HARMONIC BALANCE TECHNIQUE FOR DETERMINATION OF PERIODIC RESPONSE OF NONLINEAR-SYSTEMS [J].
NAKHLA, MS ;
VLACH, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1976, 23 (02) :85-91