Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or moldboard plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.