Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise

被引:5
作者
Asem, Morteza Modarresi [1 ]
Oveisi, Iman Sheikh [2 ]
Janbozorgi, Mona [3 ]
机构
[1] Med Sci Univ, Dept Biomed Engn, Tehran, Iran
[2] Islamic Azad Univ, Dept Biomed Engn Sci & Res, Tehran, Iran
[3] Washington State Univ, Dept Med Sci, Spokane, WA USA
关键词
wide-field retinal image; blood vessel segmentation; fuzzy noise reduction; contrast limited adaptive histogram equalization method; morphology operators using reconstruction; multistructure elements morphology;
D O I
10.1117/1.JMI.5.3.031405
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Retinal blood vessels indicate some serious health ramifications, such as cardiovascular disease and stroke. Thanks to modern imaging technology, high-resolution images provide detailed information to help analyze retinal vascular features before symptoms associated with such conditions fully develop. Additionally, these retinal images can be used by ophthalmologists to facilitate diagnosis and the procedures of eye surgery. A fuzzy noise reduction algorithm was employed to enhance color images corrupted by Gaussian noise. The present paper proposes employing a contrast limited adaptive histogram equalization to enhance illumination and increase the contrast of retinal images captured from state-of-the-art cameras. Possessing directional properties, the multistructure elements method can lead to high-performance edge detection. Therefore, multistructure elements-based morphology operators are used to detect high-quality image ridges. Following this detection, the irrelevant ridges, which are not part of the vessel tree, were removed by morphological operators by reconstruction, attempting also to keep the thin vessels preserved. A combined method of connected components analysis (CCA) in conjunction with a thresholding approach was further used to identify the ridges that correspond to vessels. The application of CCA can yield higher efficiency when it is locally applied rather than applied on the whole image. The significance of our work lies in the way in which several methods are effectively combined and the originality of the database employed, making this work unique in the literature. Computer simulation results in wide-field retinal images with up to a 200-deg field of view are a testimony of the efficacy of the proposed approach, with an accuracy of 0.9524. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 47 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]   An Active Contour Model for Segmenting and Measuring Retinal Vessels [J].
Al-Diri, Bashir ;
Hunter, Andrew ;
Steel, David .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1488-1497
[3]  
[Anonymous], 2010, BILDVERARBEITUNG MED
[4]   Trainable COSFIRE filters for vessel delineation with application to retinal images [J].
Azzopardi, George ;
Strisciuglio, Nicola ;
Vento, Mario ;
Petkov, Nicolai .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :46-57
[5]   Morphological scale-space preserving transforms in many dimensions [J].
Bangham, JA ;
Harvey, R ;
Ling, PD ;
Aldridge, RV .
JOURNAL OF ELECTRONIC IMAGING, 1996, 5 (03) :283-299
[6]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[7]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[8]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[9]  
Hamadani N., 1981, THESIS
[10]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210