RENORMALIZATION-GROUP THEORY FOR GLOBAL ASYMPTOTIC ANALYSIS

被引:194
作者
CHEN, LY [1 ]
GOLDENFELD, N [1 ]
OONO, Y [1 ]
机构
[1] UNIV ILLINOIS,BECKMAN INST,URBANA,IL 61801
关键词
D O I
10.1103/PhysRevLett.73.1311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show with several examples that renormalization group (RG) theory can be used to understand singular and reductive perturbation methods in a unified fashion. Amplitude equations describing slow motion dynamics in nonequilibrium phenomena are RG equations. The renormalized perturbation approach may be simpler to use than other approaches, because it does not require the use of asymptotic matching and yields practically superior approximations.
引用
收藏
页码:1311 / 1315
页数:5
相关论文
共 20 条
  • [1] Barenblatt G, 1979, SIMILARITY SELF SIMI
  • [2] Bender Carl, 1999, ADV MATH METHODS SCI, V1
  • [3] RENORMALIZATION-GROUP AND THE GINZBURG-LANDAU EQUATION
    BRICMONT, J
    KUPIAINEN, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) : 193 - 208
  • [4] SELECTION, STABILITY AND RENORMALIZATION
    CHEN, LY
    GOLDENFELD, N
    OONO, Y
    PAQUETTE, G
    [J]. PHYSICA A, 1994, 204 (1-4): : 111 - 133
  • [5] INTRODUCTION TO BIFURCATION-THEORY
    CRAWFORD, JD
    [J]. REVIEWS OF MODERN PHYSICS, 1991, 63 (04) : 991 - 1037
  • [6] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [7] QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES
    GELLMANN, M
    LOW, FE
    [J]. PHYSICAL REVIEW, 1954, 95 (05): : 1300 - 1312
  • [8] ANOMALOUS DIMENSIONS AND THE RENORMALIZATION-GROUP IN A NONLINEAR DIFFUSION PROCESS
    GOLDENFELD, N
    MARTIN, O
    OONO, Y
    LIU, F
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (12) : 1361 - 1364
  • [9] Goldenfeld N., 1989, Journal of Scientific Computing, V4, P355, DOI 10.1007/BF01060993
  • [10] GOLDENFELD N, 1992, LECTURES PHASE TRANS