A GEOMETRICALLY-EXACT ROD MODEL INCORPORATING SHEAR AND TORSION-WARPING DEFORMATION

被引:276
作者
Simo, J. C. [1 ]
Vu-Quoc, L. [2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Florida, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Galerkin Projection - Shear Deformation - Torsion - Variational Methods - Warping;
D O I
10.1016/0020-7683(91)90089-X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A fully nonlinear, three-dimensional rod model is developed that incorporates transverse shear and torsion-warping deformation. The geometric setting is that of a constrained body model with configuration space modeled on R(3) x SO(3) x R: a differentiable manifold. The proposed model incorporates the classical notion of bi-moment (and bi-shear) in a fully nonlinear, geometrically exact context. Explicit. properly invariant. constitutive equations that generalize those of the linearized theory are developed. The underlying variational formulation of the model is discussed, and computational procedures employing a Galerkin projection arc addressed. Numerical examples are presented that illustrate the performance of the formulation.
引用
收藏
页码:371 / 393
页数:23
相关论文
共 56 条
[1]  
ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P353
[2]  
ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P307
[3]   KIRCHHOFFS PROBLEM FOR NONLINEARLY ELASTIC RODS [J].
ANTMAN, SS .
QUARTERLY OF APPLIED MATHEMATICS, 1974, 32 (03) :221-240
[4]   QUALITATIVE ASPECTS OF SPATIAL DEFORMATION OF NON-LINEARLY ELASTIC RODS [J].
ANTMAN, SS ;
JORDAN, KB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1975, 73 :85-105
[5]  
ANTMAN SS, 1981, ARCH RATION MECH AN, V76, P289, DOI 10.1007/BF00249969
[6]  
ANTMANN SS, 1972, HDB PHYS
[7]  
ANTMANN SS, 1979, Q APPL MATH, V36, P337
[8]   ON THE CONVERGENCE OF THE SEMI-DISCRETE INCREMENTAL METHOD IN NONLINEAR, 3-DIMENSIONAL, ELASTICITY [J].
BERNADOU, M ;
CIARLET, PG ;
JIANWEI, H .
JOURNAL OF ELASTICITY, 1984, 14 (04) :425-440
[9]   SHEAR COEFFICIENT IN TIMOSHENKOS BEAM THEORY [J].
COWPER, GR .
JOURNAL OF APPLIED MECHANICS, 1966, 33 (02) :335-&
[10]  
DUPOIS G, 1969, J APPL MATH PHYS, V20, P94