The Equiconvergence of Expansions in Eigenfunctions and Associated Functions of an Integral Operator with Involution

被引:0
作者
Kuvardina, L. P. [1 ]
Khromov, A. P. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Ul Astrakhanskaya 83, Saratov 410026, Russia
基金
俄罗斯基础研究基金会;
关键词
integral operator; resolvent; involution; eigenfunctions and associated functions; Fourier series;
D O I
10.3103/S1066369X08050071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study an integral operator with involution. We solve the problem on the exact inversion of this operator, we obtain and study the integro-differential system for the Fredholm resolvent and, finally, we prove the theorem on the equiconvergence of expansions in eigenfunctions and associated functions, in the usual trigonometric system.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 12 条
[1]  
Andreev A. A., 2004, DIFF URAVN, V40, P1126
[2]  
Babbage Ch., 1816, PHIL T R SOC LONDON, V11, P179
[3]  
Bari N. K., 1961, TRIGONOMETRIC SERIES
[4]  
Belousova L. P., 2000, INTEGRAL, P17
[6]  
Khromov A. P., 1998, MAT ZAMETKI, V64, P932
[7]  
KHROMOV AP, 2004, DOKL ROSS AKAD ESTES, P80
[8]  
[Корнев В.В. Kornev V.V.], 2005, [Известия Российской академии наук. Серия математическая, Izvestiya: Mathematics, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya], V69, P59
[9]  
KORNEV VV, 2001, MAT SBORNIK, V192, P33, DOI 10.4213/sm601
[10]  
KURDYUMOV VP, 2004, MAT ZAMETKI, V76, P97, DOI 10.4213/mzm92