LOCATION OF ZEROS AND ASYMPTOTICS OF POLYNOMIALS SATISFYING 3-TERM RECURRENCE RELATIONS WITH COMPLEX COEFFICIENTS

被引:15
作者
BARRIOS, D
LOPEZ, G
TORRANO, E
机构
[1] Universidad politecnica de Madrid, Madrid
[2] Universidad de la habana, Habana
关键词
D O I
10.1070/SM1995v080n02ABEH003527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under very general conditions on the complex coefficients of a three-term recurrence relation, it is proved that ''almost all'' zeros of the polynomials generated by these relations ''accumulate'' on a certain segment in the complex plane. From this result follow the convergence of diagonal Pade approximants and a generalization of Van Vleck's theorem on the convergence of S-fractions. Another interesting application is an extension of the so-called Nevai-Blumenthal class of polynomials M(a, 2b) to the case when a, b is an element of C.
引用
收藏
页码:309 / 333
页数:25
相关论文
共 14 条
[1]  
GELFFOND AO, 1967, CALCULUS FINITE DIFF
[2]  
Gohberg I., 1990, CLASSES LINEAR OPERA, V1
[3]  
GONCAR AA, 1975, MAT SB, V0097, P00607
[4]  
GONCHAR A. A., 1981, MAT SBORNIK, V115, P590
[5]  
GONCHAR AA, 1980, MAT SBORNIK, V111, P279
[6]  
Halmos P. R., 1984, HILBERT SPACE PROBLE, V2nd
[7]  
Kato T., 1966, PERTURBATION THEORY
[8]  
Lopes G. L., 1988, MAT SB, V136, P206
[9]  
LOPEZ G, 1984, LECT NOTES MATH, V1105, P11
[10]   TOEPLITZ MATRIX TECHNIQUES AND CONVERGENCE OF COMPLEX WEIGHT PADE APPROXIMANTS [J].
MAGNUS, AP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 19 (01) :23-38