LONG-TERM EVOLUTION OF STRONG 2-D NSE TURBULENCE

被引:12
作者
FRAIMAN, GM [1 ]
SHER, EM [1 ]
YUNAKOVSKY, AD [1 ]
LAEDKE, W [1 ]
机构
[1] UNIV DUSSELDORF,INST THEORET PHYS,W-4000 DUSSELDORF,GERMANY
来源
PHYSICA D | 1995年 / 87卷 / 1-4期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/0167-2789(95)00136-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An effective computational algorithm based on a spectral method conserving the advantages of both explicit and implicit schemes, is suggested. The attempt to interpret the numerical solution of the evolution problem from the standpoint of splitting in physical processes of the starting problem was proposed. The condition under which the chosen difference analogue of the initial equation approximates it with 0(tau(2)) precision, was obtained. The numerical algorithm and the computing results for the case of the 2-D Nonlinear Schrodinger Equation with nonlinearity \E\(1/2), are presented.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 10 条
[1]  
ARANSON IS, 1989, STOCHASTIZATION FLOW
[2]  
DEGTYAREV LM, 1974, SOV PHYS JETP, V67, P533
[3]  
DYACHENKO AI, 1989, ZH EKSP TEOR FIZ+, V96, P2026
[4]   TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE [J].
FLECK, JA ;
MORRIS, JR ;
FEIT, MD .
APPLIED PHYSICS, 1976, 10 (02) :129-160
[5]  
Hardin RH, 1973, SIAM REV, V15, P423, DOI DOI 10.1137/1015060
[6]  
LANDAU LD, 1988, THEORETICAL PHYSICS, P123
[7]  
PATRIS D, 1990, J COMPUT PHYS, V87, P108
[8]  
PROTOGENOV AP, 1987, ZH EKSP TEOR FIZ+, V92, P1658
[9]  
REED M, 1977, METHODS MODERN MATH, V2, P311
[10]  
Yankov V. V., 1994, Transport, Chaos and Plasma Physics, P58