COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS

被引:47
作者
GOBEL, M
机构
[1] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 72076 Tübingen
关键词
D O I
10.1006/jsco.1995.1017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R be a commutative ring with 1, let R[X(1),..., X(n)] be the polynomial ring in X1,..., X(n) over R and let G be an arbitrary group of permutations of {X(1),..., X(n)}. The paper presents an algorithm for computing a small finite basis B of the R-algebra of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant polynomial in R[X(1),..., X(n)] as a polynomial in the polynomials of the finite basis B. The algorithm works independently of the ground ring R, and the basis B contains only polynomials of total degree less than or equal to max{n, n(n - 1)/2}, independent of the size of the permutation group G.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 11 条
[1]  
Becker T., 1993, GROBNER BASES COMPUT
[2]   GROUP-ACTIONS ON STANLEY-REISNER RINGS AND INVARIANTS OF PERMUTATION-GROUPS [J].
GARSIA, AM ;
STANTON, D .
ADVANCES IN MATHEMATICS, 1984, 51 (02) :107-201
[3]  
GOBEL M, 1992, THESIS U PASSAU
[4]  
KAPUR D, 1989, P COMP MATH 89, P1
[5]  
KREDEL H, 1990, 4 INT C COMP ALG PHY, P31
[6]  
NOETHER E, 1926, ABH AKAD WISS GOTTIN, P28
[7]   The finiteness theorem of the invariants of finite groups. [J].
Noether, Emmy .
MATHEMATISCHE ANNALEN, 1915, 77 :89-92
[8]  
ROBBIANO L, 1990, LECT NOTES MATH, V1430, P61
[9]  
Schmid Barbara J., 1989, LECT NOTES MATH, V1478, P35
[10]  
TURMFELS B, 1993, ALGORITHMS INVARIANT