ON ACCESSIBLE SUBRINGS OF ASSOCIATIVE-RINGS

被引:1
作者
ANDRUSZKIEWICZ, RR [1 ]
机构
[1] UNIV WARSAW,INST MATH,BIALYSTOK DIV,PL-15267 BIALYSTOK,POLAND
关键词
D O I
10.1017/S0013091500005356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe for every natural n the class of rings R such that if R is an accessible (left accessible) subring of a ring then R is an n-accessible (n-left-accessible) subring of the ring. This is connected with the problem of the termination of Kurosh's construction of the lower (lower strong) radical. The result for n = 2 was obtained by Sands in a connection with some other questions.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 9 条
[1]  
BEIDAR KI, 1982, CZECH MATH J, V32, P418
[2]   A NOTE ON LOWER RADICAL CONSTRUCTIONS FOR ASSOCIATIVE RINGS [J].
HEINICKE, AG .
CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (01) :23-&
[3]  
L'vov I.V., 1984, MAT ZAMETKI, V36, P815
[4]  
Puczylowski E. R., 1987, QUAEST MATH, V10, P321
[5]   RADICALS AND ONE-SIDED IDEALS [J].
SANDS, AD .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 103 :241-251
[6]  
SANDS AD, 1988, PUBL MATH, V35, P273
[7]  
SULINSKI A, 1966, J LONDON MATH SOC, V41, P417
[8]  
WATTERS JF, LOWER RADICAL CONSTR
[9]  
XUE LS, 1987, B SOC MATH BELG B, V39, P181