Optimal one-parameter mean bounds for the convex combination of arithmetic and geometric means

被引:6
作者
Xia, Weifeng [1 ]
Hou, Shouwei [2 ]
Wang, Gendi [3 ]
Chu, Yuming [3 ]
机构
[1] Huzhou Teachers Coll, Sch Teacher Educ, Huzhou 313000, Peoples R China
[2] Hangzhou Normal Univ, Sch Sci, Hangzhou 310012, Zhejiang, Peoples R China
[3] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
One-parameter mean; arithmetic mean; geometric mean;
D O I
10.1515/jaa-2012-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we answer the question: What are the greatest value p = p (alpha) and least value q = q (alpha) such that the double inequality J(p)(a , b) < alpha A(a , b) + (1 - alpha)G(a , b) < J(q)(a , b) holds for any alpha is an element of (0, 1) and all a ,b > 0 with a not equal b? Here, A(a ,b) = a+b/2, G (a ,b) = root ab and J(P)(a ,b) denote the arithmetic, geometric and p-th one-parameter means of a and b, respectively.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 33 条
[1]   INEQUALITIES FOR AVERAGE VALUES [J].
ALZER, H .
ARCHIV DER MATHEMATIK, 1986, 47 (05) :422-426
[2]   Inequalities for means in two variables [J].
Alzer, H ;
Qiu, SL .
ARCHIV DER MATHEMATIK, 2003, 80 (02) :201-215
[3]   A power mean inequality for the gamma function [J].
Alzer, H .
MONATSHEFTE FUR MATHEMATIK, 2000, 131 (03) :179-188
[4]  
Alzer H., 1988, BAYER AKAD WISS S MN, V1987, P1
[5]  
Alzer H., 1989, BAYER AKAD WISS S MN, V1988, P23
[6]  
Alzer H., 1987, INT J MATH ED SCI TE, V20, P186
[7]  
[Anonymous], 1987, CRUX MATH
[8]  
Bukor J., 1994, OCTOGON MATH MAGAZIN, V2, P19
[9]  
Bullen P.S., 1988, MEANTHEIR INEQUALI
[10]  
Bullen P. S., 2003, HDB MEANS THEIR INEQ, V560