THE VALIDITY OF SHAPIRO CYCLIC INEQUALITY

被引:5
作者
TROESCH, BA
机构
关键词
D O I
10.2307/2008728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:657 / 664
页数:8
相关论文
共 14 条
[1]  
Diananda P.H., 1962, P EDINBURGH MATH SOC, V13, P143
[2]  
Diananda PH., 1963, P GLASGOW MATH ASS, V6, P11, DOI [10.1017/S2040618500034626, DOI 10.1017/S2040618500034626]
[3]  
Djokovic D., 1963, P GLASGOW MATH ASS, V6, P1, DOI [10.1017/S2040618500034614, DOI 10.1017/S2040618500034614]
[4]  
DRINFELD VG, 1971, MATH NOTES, V9, P68, DOI DOI 10.1007/BF01316982
[5]  
DURELL CV, 1956, MATH GAZ, V40, P266
[6]   CYCLIC SUM WITH 12 TERMS [J].
GODUNOVA, EK ;
LEVIN, VI .
MATHEMATICAL NOTES, 1976, 19 (5-6) :510-517
[7]  
Lagarias J. C., 1982, NOT AM MATH SOC, V29, P130
[8]  
Mitrinovic D. S., 1970, ANAL INEQUALITIES, V1
[9]  
NOVOSAD P, 1968, COMMUN PUR APPL MATH, V21, P401
[10]  
Rankin R.A., 1961, P EDINBURGH MATH SOC, V12, P139