A SINGULARLY PERTURBED NONLINEAR BOUNDARY-VALUE PROBLEM

被引:27
作者
MO, JQ
机构
[1] Anhui Normal University, Wuhu
关键词
D O I
10.1006/jmaa.1993.1307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a singularly perturbed nonlinear problem [Formula presented] where y, f, A, and B are n-dimensional vector is considered. Under the appropriate assumptions the author proves that there exists a solution y(x, ε{lunate}) and the estimation of y(x, ε{lunate}) is obtained using the method of differential inequalities. © 1993 Academic Press. Inc. All rights reserved.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
[41]   THE SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS [J].
Mo JiaqiDeptof MathAnhui Normal UnivWuhu .
Applied Mathematics:A Journal of Chinese Universities, 2000, (04) :377-382
[42]   The singularly perturbed nonlinear boundary value problems [J].
Mo J. .
Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) :377-382
[43]   A singularly perturbed mixed boundary value problem [J].
Costabel, M ;
Dauge, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (11-12) :1919-1949
[44]   Singularly Perturbed Nonlinear Boundary Value Problems [J].
GE Hongxia Department of MathematicsAnhui Normal UniversityWuhu China .
数学季刊, 2003, (01) :38-43
[45]   Qualocation for a singularly perturbed boundary value problem [J].
Roos, Hans-G. ;
Uzelac, Zorica .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :556-564
[46]   ITERATION METHOD OF PASSAGE OF APPROXIMATE SOLUTION TO NONLINEAR SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEMS [J].
BOGLAEV, IP .
DOKLADY AKADEMII NAUK SSSR, 1977, 235 (06) :1241-1244
[47]   Finite-element approximation for singularly perturbed nonlinear elliptic boundary-value problems [J].
Prashant Kumar ;
Manoj Kumar .
Computational Mathematics and Modeling, 2012, 23 (1) :88-95
[48]   Singularly Perturbed Dirichlet Boundary-Value Problem for a Stationary System in the Linear Elasticity Theory [J].
Davletov, D. B. .
RUSSIAN MATHEMATICS, 2008, 52 (12) :4-12
[49]   BOUNDARY-VALUE PROBLEM FOR A SINGULARLY PERTURBED SYSTEM OF LINEAR-DIFFERENTIAL EQUATIONS WITH IMPULSES [J].
BAINOV, DD ;
HEKIMOVA, MA ;
VELIOV, VM .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1988, 31 :107-126
[50]   Singularly perturbed Dirichlet boundary-value problem for a stationary system in the linear elasticity theory [J].
D. B. Davletov .
Russian Mathematics, 2008, 52 (12) :4-12