A SINGULARLY PERTURBED NONLINEAR BOUNDARY-VALUE PROBLEM

被引:27
作者
MO, JQ
机构
[1] Anhui Normal University, Wuhu
关键词
D O I
10.1006/jmaa.1993.1307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a singularly perturbed nonlinear problem [Formula presented] where y, f, A, and B are n-dimensional vector is considered. Under the appropriate assumptions the author proves that there exists a solution y(x, ε{lunate}) and the estimation of y(x, ε{lunate}) is obtained using the method of differential inequalities. © 1993 Academic Press. Inc. All rights reserved.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
[31]   DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM WITH STRONG SQUARE NONLINEARITY [J].
EMELIANOV, KV .
DOKLADY AKADEMII NAUK SSSR, 1986, 286 (02) :269-272
[32]   Quintic Spline Approach to the Solution of a Singularly-Perturbed Boundary-Value Problem [J].
T. Aziz ;
A. Khan .
Journal of Optimization Theory and Applications, 2002, 112 :517-527
[33]   BOUNDARY-VALUE PROBLEM OF LINEAR DISCRETE-TIME SINGULARLY PERTURBED SYSTEMS [J].
BORNO, I .
CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1994, 10 (04) :923-928
[34]   EXTRAPOLATION IN THE FINITE-DIFFERENCE METHOD FOR THE SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
HERCEG, D ;
PETROVIC, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04) :T126-T128
[36]   Third-order nonlinear singularly perturbed boundary value problem [J].
Wang, GC ;
Jin, L .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2002, 23 (06) :670-677
[37]   THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM [J].
王国灿 ;
金丽 .
AppliedMathematicsandMechanics(EnglishEdition), 2002, (06) :670-677
[39]   On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems [J].
Anoshchenko, O. ;
Lysenko, O. ;
Khruslov, E. .
JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2009, 5 (02) :115-122
[40]   Third-order nonlinear singularly perturbed boundary value problem [J].
Wang Guo-can ;
Jin Li .
Applied Mathematics and Mechanics, 2002, 23 (6) :670-677