A SINGULARLY PERTURBED NONLINEAR BOUNDARY-VALUE PROBLEM

被引:27
作者
MO, JQ
机构
[1] Anhui Normal University, Wuhu
关键词
D O I
10.1006/jmaa.1993.1307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a singularly perturbed nonlinear problem [Formula presented] where y, f, A, and B are n-dimensional vector is considered. Under the appropriate assumptions the author proves that there exists a solution y(x, ε{lunate}) and the estimation of y(x, ε{lunate}) is obtained using the method of differential inequalities. © 1993 Academic Press. Inc. All rights reserved.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
[21]   A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM MODELING A SEMICONDUCTOR-DEVICE [J].
MARKOWICH, PA ;
RINGHOFER, CA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (02) :231-256
[22]   A FINITE-ELEMENT METHOD FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
STYNES, M ;
ORIORDAN, E .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :1-15
[24]   Existence of solutions with turning points for nonlinear singularly perturbed boundary-value problems [J].
Kolesov, AY ;
Rozov, NK .
MATHEMATICAL NOTES, 2000, 67 (3-4) :444-447
[25]   SINGULARLY PERTURBED NONLINEAR BOUNDARY-VALUE PROBLEMS WITH TURNING POINTS .2. [J].
HOWES, FA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1978, 9 (02) :250-271
[26]   A GREEN-FUNCTION APPROACH FOR A SINGULARLY PERTURBED VECTOR BOUNDARY-VALUE PROBLEM [J].
JEFFRIES, JS ;
SMITH, DR .
ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (01) :1-50
[27]   Existence of solutions with turning points for nonlinear singularly perturbed boundary-value problems [J].
A. Yu. Kolesov ;
N. Kh. Rozov .
Mathematical Notes, 2000, 67 :444-447
[28]   CONVERGENCE IN A UNIFORM NORM OF GALERKIN METHOD FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
BLATOV, IA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (04) :138-147
[29]   A NONCONFORMING FINITE-ELEMENT METHOD FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
ADAM, D ;
FELGENHAUER, A ;
ROOS, HG ;
STYNES, M .
COMPUTING, 1995, 54 (01) :1-25
[30]   Quintic spline approach to the solution of a singularly-perturbed boundary-value problem [J].
Aziz, T ;
Khan, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (03) :517-527