CRITICAL-BEHAVIOR OF DYNAMICALLY TRIANGULATED QUANTUM-GRAVITY IN 4 DIMENSIONS

被引:87
作者
AGISHTEIN, ME [1 ]
MIGDAL, AA [1 ]
机构
[1] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90106-L
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We performed a detailed study of the phase transition region in four-dimensional simplicial quantum gravity, using the dynamical triangulation approach. The phase transition between the gravity and antigravity phases turned out to be asymmetrical, so that we observed the scaling laws only when the Newton constant approached the critical value from the perturbative side. The curvature susceptibility diverges with the scaling index -0.6. The physical (i.e. measured with heavy particle propagation) Hausdorff dimension of the manifolds, which is 2.3 in the gravity phase and 4.6 in the antigravity phase, turned out to be 4 at the critical point, within the measurement accuracy. These facts indicate the existence of the continuum limit in four-dimensional euclidean quantum gravity.
引用
收藏
页码:395 / 412
页数:18
相关论文
共 26 条
[1]  
AGISHTEIN M, 1990, MOD PHYS LETT A, V5, P12
[2]  
Agishtein M. E., 1990, International Journal of Modern Physics C (Physics and Computers), V1, P165, DOI 10.1142/S0129183190000086
[3]  
Agishtein M. E., 1992, Nuclear Physics B, Proceedings Supplements, V25A, P1, DOI 10.1016/S0920-5632(05)80002-7
[4]   3-DIMENSIONAL QUANTUM-GRAVITY AS DYNAMIC TRIANGULATION [J].
AGISHTEIN, ME ;
MIGDAL, AA .
MODERN PHYSICS LETTERS A, 1991, 6 (20) :1863-1884
[5]   GEOMETRY OF A 2-DIMENSIONAL QUANTUM-GRAVITY - NUMERICAL STUDY [J].
AGISHTEIN, ME ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1991, 350 (03) :690-728
[6]   NUMERICAL STUDY OF A 2-POINT CORRELATION-FUNCTION AND LIOUVILLE FIELD PROPERTIES IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
AGISHTEIN, ME ;
BENAV, R ;
MIGDAL, AA ;
SOLOMON, S .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1115-1131
[7]  
AGISHTEIN ME, UNPUB
[8]  
AGISHTEIN ME, 1991, PUPT1287
[9]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[10]  
AMBJORN J, NBIHE9147 PREPR