DYNAMIC BARRIERS TO TRANSPORT IN PULSED SPIN SYSTEMS - QUANTUM CLASSICAL CORRESPONDENCE IN THE KICKED TOP

被引:2
作者
BOORSTEIN, JL [1 ]
UZER, T [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
来源
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE | 1992年 / 70卷 / 02期
关键词
BOTTLENECKS; PHASE SPACE; TRANSPORT; SPIN SYSTEMS; CORRESPONDENCE PRINCIPLE;
D O I
10.1139/v92-070
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Classical phase space is not homogeneous, but contains barriers (such as KAM tori) that, whether intact or broken, affect the temporal evolution of dynamical systems. In this article, we study the quantal manifestations of these classical-mechanical structures. Here, the particular system is the kicked top, which consists of an angular momentum vector precessing about one direction and experiencing periodic sudden kicks around another direction. We find that a suitably defined probability distribution function (constructed from the time-dependent state vector) shows transitions from classically allowed regions to inaccessible regions at the locations where the classical dynamics places the KAM tori.
引用
收藏
页码:488 / 496
页数:9
相关论文
共 47 条
[21]  
Haake F., 1987, Zeitschrift fur Physik B (Condensed Matter), V65, P381, DOI 10.1007/BF01303727
[22]   VARIATIONAL UNIMOLECULAR RATE THEORY [J].
HASE, WL .
ACCOUNTS OF CHEMICAL RESEARCH, 1983, 16 (07) :258-264
[23]   SIMPLE-MODELS OF QUANTUM CHAOS - SPECTRUM AND EIGENFUNCTIONS [J].
IZRAILEV, FM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (5-6) :299-392
[24]   CHAOTIC IONIZATION OF HIGHLY EXCITED HYDROGEN-ATOMS - COMPARISON OF CLASSICAL AND QUANTUM-THEORY WITH EXPERIMENT [J].
JENSEN, RV ;
SUSSKIND, SM ;
SANDERS, MM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 201 (01) :1-56
[25]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[26]   RELATION BETWEEN QUANTUM AND CLASSICAL THRESHOLDS FOR MULTIPHOTON IONIZATION OF EXCITED ATOMS [J].
MACKAY, RS ;
MEISS, JD .
PHYSICAL REVIEW A, 1988, 37 (12) :4702-4706
[27]  
MCKAY RS, 1984, PHYSICA D, V13, P55
[28]   MARKOV TREE MODEL OF TRANSPORT IN AREA-PRESERVING MAPS [J].
MEISS, JD ;
OTT, E .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 20 (2-3) :387-402
[29]  
NAKAMURA K, 1986, PHYS REV LETT, V57, P5, DOI 10.1103/PhysRevLett.57.5
[30]  
Percival I C, 1979, AIP C P, V57