RESONANT MAGNETOTUNNELING VIA QUANTUM-CONFINED STATES

被引:0
作者
BETON, PH
WANG, J
MORI, N
EAVES, L
BUHMANN, H
MANSOURI, L
MAIN, PC
FOSTER, TJ
HENINI, M
机构
[1] Department of Physics, University of Nottingham, Nottingham
来源
PHYSICA B | 1995年 / 211卷 / 1-4期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/0921-4526(94)01084-E
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have measured the low temperature current-voltage characteristics (I(V)) of GaAs/AlAs resonant tunnelling diodes with sub-micron lateral dimensions. Additional peaks in I(V) are observed due to resonant tunnelling via one-dimensional quantum wire states. In the presence of a magnetic field oriented perpendicular to the current and parallel to the wire the peaks show a complex splitting evolving into a regular series at high field with up to 20 resonances. For the smallest device we are able to deduce the probability density of the lowest three bound states from the magnetic field dependence of the current and show that the confining potential is close to parabolic. For a magnetic field which is perpendicular to both the current and the wire a much weaker dependence on magnetic field is observed confirming the one-dimensional nature of our device. Finally, in the presence of a field oriented parallel to the current a continuous transition from electrostatic (at low field) to magnetic confinement (at high field) is observed.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 50 条
[31]   Tunable Spin Gaps in a Quantum-Confined Geometry [J].
Frantzeskakis, Emmanouil ;
Pons, Stephane ;
Mirhosseini, Hossein ;
Henk, Juergen ;
Ast, Christian R. ;
Grioni, Marco .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[32]   Orbital photogalvanic effects in quantum-confined structures [J].
Karch, J. ;
Tarasenko, S. A. ;
Olbrich, P. ;
Schoenberger, T. ;
Reitmaier, C. ;
Plohmann, D. ;
Kvon, Z. D. ;
Ganichev, S. D. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (35)
[33]   Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy [J].
Zheng, Shu-Wen ;
Wang, Lei ;
Wang, Hai-Yu ;
Xu, Chen-Yu ;
Luo, Yang ;
Sun, Hong-Bo .
NANOSCALE, 2021, 13 (40) :17093-17100
[34]   Electrodeposition of quantum-confined metal semiconductor nanocomposites [J].
Switzer, JA ;
Hung, CJ ;
Bohannan, EW ;
Shumsky, MG ;
Golden, TD ;
VanAken, DC .
ADVANCED MATERIALS, 1997, 9 (04) :334-&
[35]   Advances in Quantum-Confined Perovskite Nanocrystals for Optoelectronics [J].
Polavarapu, Lakshminarayana ;
Nickel, Bert ;
Feldmann, Jochen ;
Urban, Alexander S. .
ADVANCED ENERGY MATERIALS, 2017, 7 (16)
[36]   Excitonic contributions to the quantum-confined Pockels effect [J].
Toropov, AA ;
Ivchenko, EL ;
Krebs, O ;
Cortez, S ;
Voisin, P ;
Gentner, JL .
PHYSICAL REVIEW B, 2001, 63 (03) :353021-353028
[37]   QUANTUM-CONFINED ELECTRON-HOLE DROPLETS [J].
KALT, H ;
NOTZEL, R ;
PLOOG, K ;
GIESSEN, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 173 (01) :389-396
[38]   Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires [J].
Henry F. Legg ;
Matthias Rößler ;
Felix Münning ;
Dingxun Fan ;
Oliver Breunig ;
Andrea Bliesener ;
Gertjan Lippertz ;
Anjana Uday ;
A. A. Taskin ;
Daniel Loss ;
Jelena Klinovaja ;
Yoichi Ando .
Nature Nanotechnology, 2022, 17 :696-700
[39]   The Changing Colors of a Quantum-Confined Topological Insulator [J].
Vargas, Anthony ;
Basak, Susmita ;
Liu, Fangze ;
Wang, Baokai ;
Panaitescu, Eugen ;
Lin, Hsin ;
Markiewicz, Robert ;
Bansil, Arun ;
Kar, Swastik .
ACS NANO, 2014, 8 (02) :1222-1230
[40]   Optoelectronic properties in quantum-confined germanium dots [J].
Scarselli, M. ;
Masala, S. ;
Castrucci, P. ;
De Crescenzi, M. ;
Gatto, E. ;
Venanzi, M. ;
Karmous, A. ;
Szkutnik, P. D. ;
Ronda, A. ;
Berbezier, I. .
APPLIED PHYSICS LETTERS, 2007, 91 (14)