RESONANT MAGNETOTUNNELING VIA QUANTUM-CONFINED STATES

被引:0
|
作者
BETON, PH
WANG, J
MORI, N
EAVES, L
BUHMANN, H
MANSOURI, L
MAIN, PC
FOSTER, TJ
HENINI, M
机构
[1] Department of Physics, University of Nottingham, Nottingham
来源
PHYSICA B | 1995年 / 211卷 / 1-4期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/0921-4526(94)01084-E
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have measured the low temperature current-voltage characteristics (I(V)) of GaAs/AlAs resonant tunnelling diodes with sub-micron lateral dimensions. Additional peaks in I(V) are observed due to resonant tunnelling via one-dimensional quantum wire states. In the presence of a magnetic field oriented perpendicular to the current and parallel to the wire the peaks show a complex splitting evolving into a regular series at high field with up to 20 resonances. For the smallest device we are able to deduce the probability density of the lowest three bound states from the magnetic field dependence of the current and show that the confining potential is close to parabolic. For a magnetic field which is perpendicular to both the current and the wire a much weaker dependence on magnetic field is observed confirming the one-dimensional nature of our device. Finally, in the presence of a field oriented parallel to the current a continuous transition from electrostatic (at low field) to magnetic confinement (at high field) is observed.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 50 条
  • [31] Tunable Spin Gaps in a Quantum-Confined Geometry
    Frantzeskakis, Emmanouil
    Pons, Stephane
    Mirhosseini, Hossein
    Henk, Juergen
    Ast, Christian R.
    Grioni, Marco
    PHYSICAL REVIEW LETTERS, 2008, 101 (19)
  • [32] Orbital photogalvanic effects in quantum-confined structures
    Karch, J.
    Tarasenko, S. A.
    Olbrich, P.
    Schoenberger, T.
    Reitmaier, C.
    Plohmann, D.
    Kvon, Z. D.
    Ganichev, S. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (35)
  • [33] Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy
    Zheng, Shu-Wen
    Wang, Lei
    Wang, Hai-Yu
    Xu, Chen-Yu
    Luo, Yang
    Sun, Hong-Bo
    NANOSCALE, 2021, 13 (40) : 17093 - 17100
  • [34] Electrodeposition of quantum-confined metal semiconductor nanocomposites
    Switzer, JA
    Hung, CJ
    Bohannan, EW
    Shumsky, MG
    Golden, TD
    VanAken, DC
    ADVANCED MATERIALS, 1997, 9 (04) : 334 - &
  • [35] Advances in Quantum-Confined Perovskite Nanocrystals for Optoelectronics
    Polavarapu, Lakshminarayana
    Nickel, Bert
    Feldmann, Jochen
    Urban, Alexander S.
    ADVANCED ENERGY MATERIALS, 2017, 7 (16)
  • [36] QUANTUM-CONFINED ELECTRON-HOLE DROPLETS
    KALT, H
    NOTZEL, R
    PLOOG, K
    GIESSEN, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 173 (01): : 389 - 396
  • [37] Excitonic contributions to the quantum-confined Pockels effect
    Toropov, AA
    Ivchenko, EL
    Krebs, O
    Cortez, S
    Voisin, P
    Gentner, JL
    PHYSICAL REVIEW B, 2001, 63 (03) : 353021 - 353028
  • [38] The Changing Colors of a Quantum-Confined Topological Insulator
    Vargas, Anthony
    Basak, Susmita
    Liu, Fangze
    Wang, Baokai
    Panaitescu, Eugen
    Lin, Hsin
    Markiewicz, Robert
    Bansil, Arun
    Kar, Swastik
    ACS NANO, 2014, 8 (02) : 1222 - 1230
  • [39] Optoelectronic properties in quantum-confined germanium dots
    Scarselli, M.
    Masala, S.
    Castrucci, P.
    De Crescenzi, M.
    Gatto, E.
    Venanzi, M.
    Karmous, A.
    Szkutnik, P. D.
    Ronda, A.
    Berbezier, I.
    APPLIED PHYSICS LETTERS, 2007, 91 (14)
  • [40] Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires
    Henry F. Legg
    Matthias Rößler
    Felix Münning
    Dingxun Fan
    Oliver Breunig
    Andrea Bliesener
    Gertjan Lippertz
    Anjana Uday
    A. A. Taskin
    Daniel Loss
    Jelena Klinovaja
    Yoichi Ando
    Nature Nanotechnology, 2022, 17 : 696 - 700