MEASURABILITY AND INTEGRABILITY OF THE WEAK UPPER LIMIT OF A SEQUENCE OF MULTIFUNCTIONS

被引:33
作者
HESS, C
机构
[1] Centre de Recherche de Mathématiques de la Décision (CEREMADE), Université Paris Dauphine
关键词
D O I
10.1016/0022-247X(90)90275-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide several properties of the weak upper limit of a sequence of subsets of a separable Banach space, such as a criterion of non-vacuity, of closedness, etc. We also examine the measurability of the multifunction defined as the weak upper limit of a sequence of multifunctions. At last, applications to the existence of a measurable and Bochner integrable selector for this multifunction are presented. © 1990.
引用
收藏
页码:226 / 249
页数:24
相关论文
共 32 条
[1]  
ATTOUCH H, 1984, APPLICABLE MATH SERI
[2]   FATOUS LEMMA IN INFINITE DIMENSIONS [J].
BALDER, EJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 136 (02) :450-465
[3]   ON MOSCO CONVERGENCE OF CONVEX-SETS [J].
BEER, G .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (02) :239-253
[4]  
BERGE C, 1966, ESPACES TOPOLOGIQUES
[5]  
CASTAING C, 1987, SEMINAIRE ANAL CONVE
[6]  
CHOUKAIRIDINI A, 1987, SEMINAIRE ANAL CONVE
[7]  
HESS C, 1987, CR ACAD SCI I-MATH, V305, P631
[8]  
HESS C, 1985, SEMINAIRE ANAL CONVE
[9]  
HESS C, 1986, SEMINAIRE ANAL CONVE
[10]  
HESS C, IN PRESS MATH OPER R